Fossil bees and their plant associates

Denis Michez, Maryse Vanderplanck
and Michael S. Engel

5.1 Introduction

The bees comprise a derived monophyletic group (Anthophila) of pollenconsuming (secondarily phytophagous) wasps of the superfamily Apoidea, and that diverged from a grade of predatory apoid wasps (formerly "Sphecidae") sometime in the mid Cretaceous ($\sim 120-125$ megaannum) (Michener 1944, 1979, 2007; Brothers 1975, 1998; Alexander 1992; Ronquist 1999; Engel 2001a, 2011; Danforth et al. 2006). Seven contemporary families are usually acknowledged: Andrenidae, Apidae, Colletidae, Halictidae, Melittidae, Megachilidae and Stenotritidae, including ~ 1200 genera and ~ 20000 species (Michener 2007; Engel 2005, 2011). Two fossil families are also described: Paleomelittidae from middle Eocene Baltic amber, and a stem-group, Melittosphecidae from Cretaceous Burmese amber which, as discussed below, may or may not be a bee (Engel 2001a; Poinar and Danforth 2006; Ohl and Engel 2007). Bees likely arose concomitantly with the diversification of flowering plants (angiosperms) (Michener 1979; Grimaldi 1999; Engel 1996, 2001a; Crepet et al. 2004; Grimaldi and Engel 2005). Represented by more than 250000 described species, angiosperms are the most diversified group of vascular plants, covering nearly all terrestrial and many aquatic habitats (Soltis and Soltis 2004). The congruent rise of flowering plants and numerous phytophagous insect lineages, such as bees, ditrysian Lepidoptera, and various flowering-visiting beetles and flies, has fuelled the

[^0]notion of coradiation between these lineages. Such a conclusion is supported by the observation of flowers with specific combinations of traits that are correlated with particular pollinators (Bronstein et al. 2006). Selection for insectpollinated clades is also supported by the fact that deliverance by pollinators of unconsumed pollen to the host plant's female reproductive organs is clearly less stochastic and more efficient than alternative ancestral wind, water or gravity dispersive methods (Labandeira 1998). Lastly, association with pollinators increases opportunities for the evolution of specialization and subsequent diversification (Vamosi and Vamosi 2010).

To test hypotheses regarding the macroevolutionary dynamics of plants and their insect associates, the examination of fossil plant-insect interactions is essential. This chapter is focused on the peculiar mutualistic interactions between angiosperms and their major pollinators, the bees, as well as a consideration of those traces of their past interactions preserved in the geological records. We first describe modern bee-plant interactions and their syndromes. From there we synthesize some methodologies for studying past ecological associations. The bulk of this contribution is an elaboration of the main fossil records for bees in the context of their contemporaneous environmental factors, such as climate, habitat, and likely host plants. A general catalogue of bee fossils is presented in Table 5.1 and constitutes the current state of affairs for paleomelittology. Naturally, much revisionary work remains to be undertaken for all of these deposits, particularly the historical accounts of paleofaunas such as Florissant, and a re-evaluation of these may result in considerable changes of taxonomic affinity. Such changes are beyond the scope of the present work and require careful revisions of historical type material. Relationships between bee fossils and their likely host plants are discussed in the context of higher relationships as proposed in Grimaldi (1999) and Danforth et al. (2006). Refer to Engel (2004b), Grimaldi and Engel (2005), and Ohl and Engel (2007) for an alternative set of phylogenetic relationships in association with the fossil records.

5.2 Modern evidence of bee-plant interactions

Pollinators develop adaptative morphological features to forage on plant rewards while plants develop traits to announce such rewards. These adaptative character syndromes are described as "pollination syndromes." They are morphologically convergent adaptative trends exhibited by both the floral features of pollinated plants and the mouthpart structures as well as other flowerinteractive features of their respective pollinators (Proctor et al. 1996; Bronstein et al. 2006). Bees and bee-pollinated angiosperms show obvious pollination syndromes.
Table 5.1 Bee body fossils and traces are listed by geological eras and then in alphabetical order. All species described from inclusions in amber as well as compressions are extinct. All species described from copal are still extant with the exceptions of Liotrogona vetula and Euglossa cotylisca. All extinct supraspecific taxa are noted by an asterix (*). The classification follows that of Michener (2007). A = Amber. C = Compression. Co = Copal. IN = ichnospecies, nest trace (we do not consider nest traces included in the ichnogenera Brownichnus, Celliforma and Palmiraichnus because of their simple structure, poorly relatable to bees). ILD = ichnospecies, leaf damage. F = Female. FW = Female worker. $\mathrm{M}=$ Male. Upp = Upper. Low = Lower. Mid = Middle. Num = Numerous. Note that the trace fossil "Atta praecursor" from the Late Cretaceous of Bohemia (Frič and Bayer 1901) was considered a Megachile trace by Baroni Urbani (1980) but the specimen does not appear to be a bee trace fossil (personal observation).

Family	Subfamily	Tribe		Species (A, C) or Ichnospecies (IN, ILD)	Age	Deposit locality	N

Table 5.1 (cont.)

Family	Subfamily	Tribe	Species (A, C) or Ichnospecies (IN, ILD)	Age	Deposit locality	N	References
Hal.	Incerta Sedis	Incerta Sedis	Uruguay auroranormae Roselli 1938 (IN)	-70	Nueva Palmira (Urug.)	Num	Genise (2000); Engel and Peñalver (2006)
Hal.	Incerta Sedis	Incerta Sedis	Uruguay rivasi (Roselli 1987) (IN)	-70	Nueva Palmira (Urug.)	Num	Genise (2000); Engel and Peñalver (2006)
Melitt.*	Melittosphe.	Melittosphecini	Melittosphex burmensis Poinar and Danforth 2006 (A)	-100	Hukawng valley (Bur.)	1 M	Poinar and Danforth (2006); Ohl and Engel (2007)
Paleocene							
Apid.	Apinae	Anthophorini	Paleohabropoda* oudardi Michez and Rasmont 2009 (C)	-60	Menat (France)	1F	Michez et al. (2009a)
Meg.	Megachilinae	Incerta Sedis	Probombus* hirsutus Piton $1940 \text { (C) }$	-60	Menat (France)	1F	Nel and Petrulevicius (2003)
Meg.	Megachilinae	Megachilini	Phagophytichnus spp. (ILD)	-60	Menat (France)	1	Wedmann et al. (2009)
Eocene - Baltic amber							
Apid.	Apinae	Electrapini*	Electrapis krishnorum Engel 2001 (A)	-48	Baltic basin	4FW	Engel (2001a)
Apid.	Apinae	Electrapini*	E. martialis (Cockerell 1908) (A)	-48	Baltic basin	2FW	$\begin{aligned} & \text { Cockerell (1908c); Engel } \\ & \text { (2001a) } \end{aligned}$
Apid.	Apinae	Electrapini*	E. meliponoides (ButtelReepen 1906) (A)	-48	Baltic basin	1FW	Engel (2001a)
Apid.	Apinae	Electrapini*	E. tornquisti Cockerell 1908 (A)	-48	Baltic basin	3FW	Cockerell (1908c); Engel (2001a)

Apid.	Apinae	Electrapini*	Protobombus basilaris Engel 2001 (A)	-48	Baltic basin	1FW	Engel (2001a)
Apid.	Apinae	Electrapini*	P. fatalis (Cockerell 1908) (A)	-48	Baltic basin	2FW	Cockerell (1908c); Engel (2001a)
Apid.	Apinae	Electrapini*	P. hirsutus (Cockerell 1908) (A)	-48	Baltic basin	4FW	Cockerell (1908c); Engel (2001a)
Apid.	Apinae	Electrapini*	P. indecisus (Cockerell 1908) (A)	-48	Baltic basin	4FW	Cockerell (1908c); Engel (2001a)
Apid.	Apinae	Electrapini*	P. tristellus Cockerell 1909 (A)	-48	Baltic basin	1FW	Engel (2001a)
Apid.	Apinae	Electrapini*	Thaumastobombus andreniformis Engel 2001 (A)	-48	Baltic basin	2FW	Engel (2001a); Patiny et al. (2007)
Apid.	Apinae	Electrobombini*	Electrobombus samlandensis Engel 2001 (A)	-48	Baltic basin	2FW	Engel (2001a)
Apid.	Apinae	Melikertini*	Melikertes clypeatus Engel $2001 \text { (A) }$	-48	Baltic basin	3FW	Engel (2001a, 2004b, unpublished data)
Apid.	Apinae	Melikertini*	M. proavus (Menge 1856) (A)	-48	Baltic basin	2FW	Engel (2001a)
Apid.	Apinae	Melikertini*	M. stilbonotus (Engel 1998) (A)	-48	Baltic basin	9FW	$\begin{aligned} & \text { Engel (1998b, 2001a, } \\ & \text { 2004b) } \end{aligned}$
Apid.	Apinae	Melikertini*	Melissites trigona Engel $2001 \text { (A) }$	-48	Baltic basin	1FW	Engel (2001a)

Table 5.1 (cont.)

Family	Subfamily	Tribe	Species (A, C) or Ichnospecies (IN, ILD)	Age	Deposit locality	N	References
Apid.	Apinae	Melikertini*	Roussyana palmnickenensis (Roussy 1937) (A)	-48	Baltic basin	3FW	Engel (2001a)
Apid.	Apinae	Melikertini*	Succinapis goeleti Engel $2001 \text { (A) }$	-48	Baltic basin	4FW	Engel (2001a, 2004b)
Apid.	Apinae	Melikertini*	S. micheneri Engel 2001 (A)	-48	Baltic basin	30FW	Engel (2001a, 2004b)
Apid.	Apinae	Melikertini*	S. proboscidea Engel 2001 (A)	-48	Baltic basin	3 FW	Engel (2001a)
Apid.	Apinae	Meliponini	Liotrigonopsis rozeni Engel 2001 (A)	-48	Baltic basin	1FW	Engel (2001a)
Apid.	Apinae	Meliponini	Kelneriapis eocenica Kelner- Pillault 1969 (A)	-48	Baltic basin	1FW	Engel (2001a)
Apid.	Xylocopinae	Boreallodapini*	Boreallodape baltica Engel $2001 \text { (A) }$	-48	Baltic basin	9F	Engel (2001a, 2004b)
Apid.	Xylocopinae	Boreallodapini*	B. mollyae Engel 2001 (A)	-48	Baltic basin	6F	Engel (2001a, 2004b)
Apid.	Xylocopinae	Boreallodapini*	B. striebichi Engel 2001 (A)	-48	Baltic basin	14F	Engel (2001a)
Hal.	Halictinae	Halictini	Electrolictus* antiquus Engel 2001 (A)	-48	Baltic basin	1F	Engel (2001a)
Mel.	Melittinae	Macropidini	Eomacropis* glaesaria Engel 2001 (A)	-48	Baltic basin	1F	Engel (2001a); Michez et al. (2009b)

Meg.	Megachilinae	Protolithurgini*	Protolithurgus ditomeus Engel 2001 (A)	-48	Baltic basin	1F	Engel (2001a, 2005); Engel and Perkovsky (2006)
Meg.	Megachilinae	Ctenoplectrellini*	Ctenoplectrella cockerelli Engel 2001 (A)	-48	Baltic basin	3F	Engel (2001a); Engel and Perkovsky (2006)
Meg.	Megachilinae	Ctenoplectrellini*	C. gorskii Engel 2008 (A)	-48	Baltic basin	2F	Engel (2008)
Meg.	Megachilinae	Ctenoplectrellini*	C. grimaldii Engel 2001 (A)	-48	Baltic basin	1F	Engel (2001a); Engel and Perkovsky (2006)
Meg.	Megachilinae	Ctenoplectrellini*	C. viridiceps Cockerell 1909 (A)	-48	Baltic basin	12F/2M	Cockerell (1909c); Engel (2001a, 2004b); Engel and Perkovsky (2006)
Meg.	Megachilinae	Ctenoplectrellini*	Glaesosmia* genalis Engel 2001 (A)	-48	Baltic basin	1F	Engel (2001a); Engel and Perkovsky (2006)
Meg.	Megachilinae	Glyptapini*	Glyptapis densopunctata Engel 2001 (A)	-48	Baltic basin	4F	Engel (2001a); Engel and Perkovsky (2006)
Meg.	Megachilinae	Glyptapini*	G. disareolata Engel 2001 (A)	-48	Baltic basin	2F	Engel (2001a); Engel and Perkovsky (2006)
Meg.	Megachilinae	Glyptapini*	G. fuscula Cockerell 1909 (A)	-48	Baltic basin	9F	Engel (2001a); Engel and Perkovsky (2006)
Meg.	Megachilinae	Glyptapini*	G. mirabilis Cockerell 1909 (A)	-48	Baltic basin	5F	Cockerell (1909c); Engel (2001a, 2004b); Engel and Perkovsky (2006)
Pal.*	Paleomettinae	Paleomelittini	Paleomelitta nigripennis Engel 2001 (A)	-48	Baltic basin	2 F	Engel (2001a)

Table 5.1 (cont.)

Family	Subfamily	Tribe	Species (A, C) or Ichnospecies (IN, ILD)	Age	Deposit locality	N	References
Eocene - Other than Baltic deposit							
Apid.	Apinae	Electrapini*	Electrapis electrapoides (Lutz 1993) (C)		Messel (Germany)	3FW	Lutz (1993); Wappler and Engel (2003)
Apid.	Apinae	Electrapini*	E. micheneri Wappler and Engel 2003 (C)	-44	Eckfeld (Germany)	1FW	Wappler and Engel (2003)
Apid.	Apinae	Electrapini*	E. prolata Wappler and Engel 2003 (C)	-44	Eckfeld (Germany)	1FW	Wappler and Engel (2003)
Apid.	Apinae	Electrapini*	Protobombus messelensis Wappler and Engel 2003 (C)	-49	Messel (Germany)	1FW	Wappler and Engel (2003)
Apid.	Apinae	Electrapini*	P. pristinus Wappler and Engel 2003 (C)	-44	Eckfeld (Germany)	1FW	Wappler and Engel (2003)
Apid.	Apinae	Electrapini*	P. spp. (A)	-52	Cambay basin (India)	1FW	Rust et al. (2010); Engel (unpublished data)
Apid	Apinae	Melikertini*	Melikertes spp. (A)	-52	Cambay basin (India)	3 FW	Rust et al. (2010); Engel (unpublished data)
Apid.	Apinae	Incerta Sedis	Pygomelissa* lutetia Engel and Wappler 2003 (C)	-49	Messel (Germany)	1F	Wappler and Engel (2003)
Hal.	Halictinae	Halictini	Halictus?savenyei Engel and Archibald 2003 (C)	-53	Quilchena (Canada)	1F	Engel and Archibald (2003); Engel and Peñalver (2006)

Mel.	Melittinae	Macropidini	Paleomacropis* eocenicus Michez and Nel 2007 (A)	-53	Oise (France)	1F	Michez et al. (2007)
Meg.	Megachilinae	Ctenoplectrellini*	Friccomelissa schopowi Wedmann et al. 2009 (C)	-49	Messel (Germany)	1F	Wedmann et al. (2009)
Meg.	Megachilinae	Ctenoplectrellini*	Ctenoplectrella zherkhini Engel and Perkovsky 2006 (A)	-48	Rovno (Ukraine)	1F	Engel and Perkovsky (2006)
Meg.	Megachilinae	Megachilini	Phagophytichnus pseudocircus Sarzetti et al. 2008 (ILD)	-44	Eckfeld (Germany)	3	Wappler and Engel (2003); Wedmann et al. (2009)
Meg.	Megachilinae	Megachilini	P. pseudocircus Sarzetti et al. 2008 (ILD)	-49	Messel (Germany)	1	Wedmann et al. (2009)
Meg.	Megachilinae	Megachilini	P. pseudocircus Sarzetti et al. 2008 (ILD)	Mid	Puryear (USA)	1	Brooks (1955); Labandeira (2002a); Wedmann et al. (2009)
Meg.	Megachilinae	Megachilini	P. pseudocircus Sarzetti et al. 2008 (ILD)	-48	Rio Pichi-Leufú (Arg.)	1	Sarzetti et al. (2008)
Meg.	Megachilinae	Megachilini	Phagophytichnus spp. (ILD)	-44	Eckfeld (Germany)	4	Wappler and Engel (2003); Wedmann et al. (2009)
Meg.	Megachilinae	Megachilini	Phagophytichnus spp. (ILD)	-49	Messel (Germany)	4	Wedmann et al. (2009)
Meg.	Megachilinae	Megachilini	Phagophytichnus sp. (ILD)	-49	Republic (USA)	2	Labandeira (2002a)

Table 5.1 (cont.)

Family	Subfamily	Tribe	Species (A, C) or Ichnospecies (IN, ILD)	Age	Deposit locality	N	References
Meg.	Megachilinae	Megachilini	Phagophytichnus spp. (ILD)	-49	MacAbee (Canada)	1	Labandeira (2002a)
Meg.	Megachilinae	Megachilini	Phagophytichnus spp. (ILD)	Mid	Viola (USA)	1	Wedmann et al. (2009)
Oligocene - Florissant shale							
And.	Andreninae	Andrenini	Andrena? clavula Cockerell 1906 (C)	-32	Florissant (USA)	1F	Cockerell (1906)
And.	Andreninae	Andrenini	A. grandipes Cockerell 1911 (C)	-32	Florissant (USA)	1F	Cockerell (1911b)
And.	Andreninae	Andrenini	A. hypolitha Cockerell 1908 (C)	-32	Florissant (USA)	1F	Cockerell (1908c)
And.	Andreninae	Andrenini	A. percontusa Cockerell 1914 (C)	-32	Florissant (USA)	1F	Cockerell (1914)
And.	Andreninae	Andrenini	A. septula Cockerell 1906 (C)	-32	Florissant (USA)	1F	Cockerell (1906)
And.	Andreninae	?	Lithandrena* saxorum Cockerell 1906 (C)	-32	Florissant (USA)	1F	Cockerell (1906)
And.	Andreninae	?	Pelandrena* reducta Cockerell 1909 (C)	-32	Florissant (USA)	1F	Cockerell (1909b)
And.	Panurginae	?	Libellulapis* antiquorum Cockerell 1906 (C)	-32	Florissant (USA)	2 F	Cockerell (1906, 1913b)

And.	Panurginae	?	L.* wilmattae Cockerell 1913 (C)	-32	Florissant (USA) 1F	Cockerell (1913b)
Apid.	Apinae	Anthophorini	Anthophora melfordi Cockerell 1908 (C)	-32	Florissant (USA) 1?	Cockerell (1908c); Michez et al. (2009a)
Apid.	Bombinae	Bombini	Calyptapis* florissantensis Cockerell 1906 (C)	-32	Florissant (USA) 2?	Cockerell (1906, 1908c)
Apid.	Xylocopinae	Ceratinini	Ceratina disrupta Cockerell $1906 \text { (C) }$	-32	Florissant (USA) 1?	Cockerell (1906); Engel (2001b)
Apid.	Xylocopinae	Xylocopini	Xylocopa gabrielae Engel 2001 (C)	-32	Florissant (USA) 1 F	Engel (2001b); Nel and Petruvecius (2003)
Apid.	Apinae	Melectini	Protomelecta* brevipennis Cockerell 1908 (C)	-32	Florissant (USA) 1?	Cockerell (1908a); Engel (2004a)
Hal.	Halictinae	Halictini	Cyrtapis* anomalus (Cockerell 1908) (C)	-32	Florissant (USA) 1?	Cockerell (1908a); Engel (2002a); Engel and Peñalver (2006)
Hal.	Halictinae	Halictini	Kronolictus* scudderiellus Cockerell 1906 (C)	-32	Florissant (USA) 1F	Cockerell (1906); Engel (2002a); Engel and Peñalver (2006)
Hal.	Halictinae	Halictini	K.* vulcanus Engel 2002 (C)	-32	Florissant (USA) 1 F	Engel (2002a); Engel and Peñalver (2006)
Hal.	Halictinae	Halictini	Ocymoromelitta* florissantella Cockerell $1906 \text { (C) }$	-32	Florissant (USA) 1F	Cockerell (1906); Engel (2002a); Engel and Peñalver (2006)

Table 5.1 (cont.)

Family	Subfamily	Tribe	Species (A, C) or Ichnospecies (IN, ILD)	Age	Deposit locality	N

Meg.	Megachilinae	Osmiini	Heriades bowditchi Cockerell $1906 \text { (C) }$		Florissant (USA) 2F	Cockerell (1906); Engel (1999c); Engel and Perkovsky (2006)
Meg.	Megachilinae	Osmiini	H. halictinus Cockerell 1906 (C)	-32	Florissant (USA) 1F	Cockerell (1906); Engel (1999c); Engel and Perkovsky (2006)
Meg.	Megachilinae	Osmiini	H. laminarum Cockerell 1906 (C)	-32	Florissant (USA) 1?	Cockerell (1906); Engel (1999c); Engel and Perkovsky (2006)
Meg.	Megachilinae	Osmiini	H. mersatus Cockerell 1923 (C)	-32	Florissant (USA) 1?	Cockerell (1923); Engel (1999c); Engel and Perkovsky (2006)
Meg.	Megachilinae	Osmiini	H. mildredae Cockerell 1925 (C)	-32	Florissant (USA) 1?	Engel (1999c); Engel and Perkovsky (2006)
Meg.	Megachilinae	Osmiini	H. priscus Cockerell 1917 (C)	-32	Florissant (USA) 1F	Cockerell (1917); Engel (1999c); Engel and Perkovsky (2006)
Meg.	Megachilinae	Osmiini	H. saxosus Cockerell 1913 (C)	-32	Florissant (USA) 1M	Cockerell (1913a); Engel (1999c); Engel and Perkovsky (2006)
Oligocene - other than Florissant shale						
Apid.	Apinae	Anthophorini?	Anthophora effosa Heyden $1862 \text { (C) }$	Upp	Rott (Germany) 1?	Cockerell (1908c); Michez et al. (2009a)

Table 5.1 (cont.)

Family	Subfamily	Tribe	Species (A, C) or Ichnospecies (IN, ILD)	Age	Deposit locality	N	References
Apid.	Apinae	Apini	Apis (Synapis*) henshawi Cockerell 1907 (C)	Upp	Rott (Germany)	1FW/5?	Cockerell (1907); Meunier (1920); Arillo et al. (1996); Engel (1998a, 1999b, 2006); Kotthoff et al. (2011)
Apid.	Apinae	Apini	A. (S. *) henshawi Cockerell 1907 (C)	Upp	Marseille (France)	$2 ?$	Nel et al. (1999a)
Apid.	Apinae	Apini	A. (S. *) henshawi Cockerell 1907 (C)	Upp	Aix-en-Provence (Fr.)	$3 F W / 2 ?$	Nel et al. (1999a); Engel (1998a, 1999b, 2006)
Apid.	Apinae	Apini	A. (S. *) cuenoti Théobald 1937 (C)	Upp	Céreste (France)	2FW/1?	Engel (1998a); Nel et al. (1999a); Kotthoff et al. (2011)
Apid.	Apinae	Apini	A. (S. *) vetusta Engel 1998 (C)	Upp	Rott (Germany)	1FW	Engel (1998a, 2006)
Apid.	Apinae	Apini	Apis spp. C (C)	Upp	Aix-en-Provence (Fr.)		Nel et al. (1999a); Kotthoff et al. (2011)
Apid.	Apinae	Eucerini	Tetralonia berlandi Théobald 1937 (C)	Upp	Céreste (France)		Zeuner \& Manning (1976)
Apid.	Xylocopinae	Xylocopini	Xylocopa celinae Nel and Petrulevicius 2003 (C)	Upp	Camoins-Is-bains (Fr.)		Ne and Petrulevicius (2003)
Apid.	Xylocopinae	Xylocopini	X. friesei Statz 1936 (C)	Upp	Rott (Germany)	$1 ?$	Nel and Petrulevicius (2003)

Hal.	Halictinae	Halictini	Halictus? ruissatelensis Timon-David 1944 (C)	Upp	Marseilles (France)	$1 ?$	Timon-David (1944); Engel (2002a)
Hal.	Halictinae	Halictini	Lasioglossum celinae Nel and Petrulevicius 2003 (C)	Mid	Bois d'Asson (France)	1F	Nel and Petrulevicius (2003); Engel and Peñalver (2006)
Hal.	Incerta Sedis	Incerta Sedis	Cellicalichnus ficoides (Retallack 1984) (IN)	Upp	Badlans (USA)	Num	Retallack (1984); Engel (1996); Genise (2000); Engel and Peñalver (2006)
Meg.	Megachilinae	Anthidiini	Anthidium mortuum (Meunier 1920) (C)	Upp	Rott (Germany)	$1 F$	Meunier (1920); Engel and Perkovsky (2006)
Meg.	Megachilinae	Osmiini?	Osmia? carbonum Heyden 1862 (C)	Upp	Rott (Germany)	$1 ?$	Engel and Perkovsky (2006)
Miocene - Dominican amber							
And.	Panurginae	Protandrenini	Heterosarus (Het.) eickworti Rozen 1996 (A)	-19	Dominican Republic	1M	Rozen (1996)
Apid.	Apinae	Euglossini	Euglossa moronei Engel 1999 (A)	-19	Dominican Republic	1F	Engel (1999d)
Apid.	Apinae	Euglossini	Eufriesea melissiflora (Poinar 1998) (A)	-19	Dominican Republic	2F	Poinar (1998); Engel (2000)
Apid.	Apinae	Euglossini	Paleoeuglossa* undescribed species (A)	-19	Dominican Republic	1F?	Poinar (2010)
Apid.	Apinae	Meliponini	Proplebeia* dominicana (Wille and Chandler 1964) (A)	-19	Dominican Republic	>1000	Engel (2009)

Table 5.1 (cont.)

Family	Subfamily	Tribe	Species (A, C) or Ichnospecies (IN, ILD)	Age	Deposit locality	N	References
Apid.	Apinae	Meliponini	P.* tantilla Camargo et al. $2000 \text { (A) }$	-19	Dominican Republic	2M/2F	Camargo et al. (2000)
Apid.	Apinae	Meliponini	P.* vetusta Camargo et al. $2000 \text { (A) }$	-19	Dominican Republic	3 F	Camargo et al. (2000)
Col.	Xeromelissinae	Xeromelissini	Chilicola (Hyl.) electrodominica Engel 1999 (A)	-19	Dominican Republic	1F	Engel (1999a)
Col.	Xeromelissinae	Xeromelissini	C. (H.) gracilis Michener and Poinar 1996 (A)	-19	Dominican Republic	1M	Michener and Poinar (1996)
Hal.	Halictinae	Augochlorini	Augochlora (Electr.) leptoloba Engel 2000 (A)	-19	Dominican Republic	1F	Engel (2000a, 2002a); Engel and Peñalver (2006)
Hal.	Halictinae	Augochlorini	Augochloropsis sp. (A)	-19	Dominican Republic	?	Poinar (2004); Engel (2002a); Engel and Peñalver (2006)
Hal.	Halictinae	Augochlorini	Neocorynura electra Engel 1995 (A)	-19	Dominican Republic	1F	Engel (1995, 2002a); Engel and Peñalver (2006)
Hal.	Halictinae	Augochlorini	Oligochlora* (Oligochlora) eickworti Engel 1996 (A)	-19	Dominican Republic	1F	Engel (1996, 2002a); Engel and Peñalver (2006)
Hal.	Halictinae	Augochlorini	O. * (O.) grimaldii Engel 1997 (A)	-19	Dominican Republic	2F	Engel (1997, 2002a); Engel and Peñalver (2006)

Hal.	Halictinae	Augochlorini	O. * (O.) micheneri Engel $1996 \text { (A) }$	-19	Dominican Republic	1F	Engel (1996, 2002a); Engel and Peñalver (2006)
Hal.	Halictinae	Augochlorini	0. * (O.) semirugosa Engel 2009 (A)	-19	Dominican Republic	1F	Engel (2009)
Hal.	Halictinae	Augochlorini	O.* (Soliapis) marquetorum Engel \& Rightmyer 2000 (A)	-19	Dominican Republic	2F	Engel and Rightmyer (2000); Engel (2002a); Engel and Peñalver (2006)
Hal.	Halictinae	Augochlorini	O. * (S.) rozeni Engel 2000 (A)	-19	Dominican Republic	1F	Engel (2000a, 2002a); Engel and Peñalver (2006)
Hal.	Halictinae	Caenohalictini	Eickwortapis* dominicana Michener and Poinar 1996 (A)	-19	Dominican Republic	1M/2F	Michener and Poinar (1996); Engel (2002a); Engel and Peñalver (2006)
Hal.	Halictinae	Caenohalictini	Nesagapostemon* moronei Engel 2009 (A)	-19	Dominican Republic	1F	Engel (2009)
Meg.	Megachilinae	Megachilini	Megachile (Chalicod.) glaesaria Engel 1999 (A)	-19	Dominican Republic	1F	Engel (1999c)
Miocene - Other than Dominican amber							
And.	Andreninae	Andrenini	Andrena? primaeva Cockerell 1909 (C)	Upp	Oeningen (Germany)	$1 ?$	Cockerell (1909c)
Apid.	Apinae	Anthophorini?	Anthophorites* Iongaeva Heer 1867 (C)	Low	Radoboj (Croatia)	$5 ?$	Cockerell (1909c); Zeuner and Manning (1976)

Table 5.1 (cont.)

Family	Subfamily	Tribe		Species (A, C) or Ichnospecies (IN, ILD)	Age	Deposit locality	N	References

Apid.	Apinae	Apini	A. (C. *) armbrusteri Zeuner 1931 (C)	Low	Bilina Mine (Cz. Rep.)		Prokop and Nel (2003); Engel et al. (2009); Kotthoff et al. (2011)
Apid.	Apinae	Apini	A. (C. *) nearctica Engel et al. 2009 (C)	-14	Stewart valley (USA)	1FW	Engel et al. (2009); Kotthoff et al. (2011)
Apid.	Apinae	Apini	A. (Megapis) lithothermaea Engel 2006 (C)	Mid	Iki Island (Japan))1FW	Nel et al. (1999a); Engel (2006); Kotthoff et al. (2011)
Apid.	Apinae	Apini	A. (Synapis*) Iongtibia Zhang 1990 (C)	Upp	Shandong (China)	1FW	Engel (1998a, 2006)
Apid.	Apinae	Apini	A. (S. *) miocenica Hong 1983 (C)	Upp	Shandong (China)	4FW	Nel et al. (1999a), Engel (1998a, 2006)
Apid.	Apinae	Apini	A. (S.*) petrefacta (Říha 1973) (C)	Low	Kundratice (Cz. Rep.)	1FW	Nel et al. (1999a); Engel (1998a, 2006)
Apid.	Apinae	Apini	A. (S.*) henshawi Cockerell 1907 (C)	Low	Izarra (Spain)	1FW	Arillo et al. (1996); Engel (1998a, 1999b, 2006); Kotthoff et al. (2011)
Apid.	Apinae	Apini	Apis "Miocene 1" (C)	Upp	Sainte-Reine (France)	3 ?	Nel et al. (1999a); Kotthoff et al. (2011)
Apid.	Apinae	Apini	Apis "Miocene 1" (C)	Upp	Andance (France)	8 ?	Nel et al. (1999a); Kotthoff et al. (2011)
Apid.	Apinae	Apini	Apis "Miocene 1" (C)	Upp	Andance (France)	$2 ?$	Nel et al. (1999a); Kotthoff et al. (2011)
Apid.	Apinae	Bombini	Bombus spp. (C)	Low	$\begin{aligned} & \text { Bilina Mine (Cz. } \\ & \text { Rep.) } \end{aligned}$		Prokop and Nel (2003)

Table 5.1 (cont.)

Family	Subfamily	Tribe	Species (A, C) or Ichnospecies (IN, ILD)	Age	Deposit locality	N	References
Apid	Apinae	Bombini	B. anacolus Zhang et al. 1994 (C)	Upp	Shandong (China)	1F	Zhang et al. (1994)
Apid.	Apinae	Bombini	B. dilectus Zhang et al. $1994 \text { (C) }$	Upp	Shandong (China)	1F	Prokop and Nel (2003)
Apid.	Apinae	Bombini	B. luianus Zhang 1990 (C)	Upp	Shandong (China)	1F	Rasnitsyn and Michener (1991)
Apid.	Apinae	Bombini	B. proavus Cockerell 1931 (C)	Upp	Latah (USA)	1F	Rasnitsyn and Michener (1991)
Apid.	Apinae	Bombini	B. vetustus Rasnitsyn and Michener 1991 (C)	Upp	Botchi river (Russia)	1M	Rasnitsyn and Michener (1991)
Apid.	Apinae	Bombini	B.? pristinus Unger 1867 (C)	Low	Euboea (Greece)	$1 ?$	Rasnitsyn and Michener (1991)
Apid.	Apinae	Bombini	B.? crassipes Novak 1877 (C)	Low	Krottensee (Cz. Rep.)	$1 ?$	Zeuner and Manning (1976)
Apid.	Apinae	Meliponini	Meliponorytes sicula Tosi 1896 (A)	-20	Sicily (Italy)	1FW	Tosi (1896); Zeuner and Manning (1976); Engel (2001a)
Apid.	Apinae	Meliponini	M. succini Tosi 1896 (A)	-20	Sicily (Italy)	>8	Tosi (1896); Zeuner and Manning (1976); Engel (2001a)
Apid.	Apinae	Meliponini	Nogueirapis silacea Wille 1959 (A)	-20	Chiapas (Mexico)	Num	Wille (1959)

Apid.	Apinae	Incerta Sedis	Paraelectrobombus* patriciae Nel and Petrulevicius $2003 \text { (C) }$	$-22,5$	Bes-Konak Basin (Tu.)	1F	Nel and Petrulevicius (2003); likely a synonym of Bombus
Apid.	Apinae	Incerta Sedis	Oligoapis* beskonakensis Nel and Petrulevicius $2003 \text { (C) }$	-22,5	Bes-Konak Basin (Tu.)	1FW	Nel and Petrulevicius (2003); likely a synonym of Bombus
Apid.	Xylocopinae	Xylocopini	Xylocopa abavus (Heer 1849) (C)	Upp	Oeningen (Germany)	4F	Heer (1849); Cockerell (1909c)
Apid.	Xylocopinae	Xylocopini	X. diatoma Zhang 1990 (C)	Upp	Shandong (China)	1F	Zhang (1990); Engel (2001b)
Apid.	Xylocopinae	Xylocopini	X. hydrobiae Zeuner $1938 \text { (C) }$	Upp	Biebrich (Germany)	2F	Engel (2001b); Prokop and Nel (2003)
Apid.	Xylocopinae	Xylocopini	X. jurinei (Heer 1865) (C)	Upp	Oeningen (Germany)	2F	Cockerell (1909c); Engel (2001b)
Apid.	Xylocopinae	Xylocopini	X. obata Zhang et al. $1994 \text { (C) }$	Upp	Shandong (China)	1F	Engel (2001b)
Apid.	Xylocopinae	Xylocopini	X. senilis Heer 1849 (C)	Upp	Oeningen (Germany)	8?	Heer (1849); Zeuner and Manning (1976); Engel (2001b)
Apid.	Xylocopinae	Xylocopini	X. veta Zhang et al. $1994 \text { (C) }$	Upp	Shandong (China)	1F	Engel (2001b)
Hal.	Halictinae	Halictini	Halictus petrefactus Engel and Peñalver 2006 (C)	Low	Rubielos (Spain)		Engel and Peñalver (2006)

Table 5.1 (cont.)

Family	Subfamily	Tribe	Species (A, C) or Ichnospecies (IN, ILD)	Age	Deposit locality	N	References
Hal.	Halictinae	Halictini	H. schemppi (Armbuster 1938) (C)	Upp	Randeck (Germany)	4 ?	Engel (2002a)
Hal.	Halictinae	Halictini	Halictus spp. (C)	Low	Euboea (Greece)		Bachmayer et al. (1971); Engel and Peñalver (2006)
Hal.	Halictinae	Incerta Sedis	Halictinae spp. (C)	Low	Izzara (Spain)	$1 ?$	Arillo et al. (1996)
Hal.	Incerta Sedis	Incerta Sedis	Rosellichnus patagonicus Genise and Bown 1996 (IN)	Upp	Puesto L.S. (Argen.)	2	Genise and Bown (1996); Genise (2000); Engel and Peñalver (2006)
Hal.	Incerta Sedis	Incerta Sedis	Cellicalichnus habari (Thackray 1994) (IN)	Upp	Rusinga (Kenya)	?	Genise (2000)
Meg.	Lithurginae	Lithurgini	Lithurgus? adamiticus (Heer 1865) (C)	Upp	Oeningen (Germany)	$3 ?$	Cockerell (1909c); Engel (1999c); Engel and Perkovsky (2006)
Meg.	Megachilinae	Anthidiini	Anthidium basalticum Zhang 1989 (C)	Upp	Shandong (China)	1F	Zhang (1989); Engel (1999c); Engel and Perkovsky (2006)
Meg.	Megachilinae	Megachilini	Megachile amaguensis Cockerell 1925 (C)	Low	Kudia river (Russia)	$1 ?$	Cockerell (1925); Engel (1999c); Engel and Perkovsky (2006)
Meg.	Megachilinae	Megachilini	M. shanwangae Zhang 1989 (C)	Upp	Shandong (China)	1F	Zhang (1989); Engel (1999c); Engel and Perkovsky (2006)

Meg.	Megachilinae	Osmiini	Osmia? antiqua Heer $1849 \text { (C) }$	Upp	Oeningen (Germany)	$1 ?$	Heer (1849); Cockerell (1909C); Engel (1999c); Engel and Perkovsky (2006)
Meg.	Megachilinae	Osmiini	O. nigra Zeuner and Manning 1976 (C)	Upp	Oeningen (Germany)	$2 ?$	Zeuner and Manning (1976); Engel (1999c); Engel and Perkovsky (2006)
Meg.	Megachilinae	incertae sedis	Megachilinae spp. Indet (C)	Upp	Latah (USA)	$1 ?$	Engel (2004a); Engel and Perkovsky (2006)
Mel.	Melittinae	Macropidini	Macropis basaltica (Zhang 1989) (C)	Upp	Shandong (China)	1F	Zhang (1989); Michez et al. (2007)
Pliocene/Pleistocene							
Apid.	Apinae	Apini	Apis mellifera L. 1758 (Co)	Pleis	East Africa	2FW	Cockerell (1909c); Zeuner and Manning. (1976); Engel (1998a, 2001a)
Apid.	Apinae	Apini	Comb of Apis cerana L. (I, comb)	Pleis	Batu (Malaysia)	1	Engel (1996)
Apid.	Apinae	Meliponini	Hypotrigona gribodoi (Magretti 1884) (Co)	Pleis	East Africa	19?	Zeuner and Manning (1976); Engel (2001a)
Apid.	Apinae	Meliponini	Liotrigona vetula Moure and Camargo 1978 (Co)	Pleis	East Africa	1FW	Moure \& Camargo (1978); Engel (2001a)

Table 5.1 (cont.)

Family	Subfamily	Tribe	Species (A, C) or Ichnospecies (IN, ILD)	Age	Deposit locality	N	References
Apid.	Apinae	Meliponini	Meliponula erythra (Schletterer 1891) (Co)	Pleis	East Africa	1FW	Zeuner and Manning (1976); Engel (2001a)
Apid.	Apinae	Meliponini	Trigona iridipennis Smith 1854 (Co)	Pleis	Hukong (Myanmar)	2FW	Zeuner and Manning (1976); Engel (2001a)
Apid.	Apinae	Meliponini	T. Iurida Smith 1854 (Co)	-2,5	Santander (Colombia)	2FW	Engel (2001a)
Apid.	Apinae	Meliponini	Trigonisca spp. (Co)	-2,5	Santander (Colombia)	>5FW	Engel (2001a)
Apid.	Apinae	Euglossini	Euglossa cotylisca HinojosaDiaz and Engel 2007 (Co)	-2,5	Santander (Colombia)	1M	Hinojosa-Diaz and Engel (2007)
Hal.	Halictinae	Halictini	Dialictus coeruleus (Robertson 1893) (C)	Pleis	Lockport (USA)	Num	Miller and Morgan (1982); Engel (2002a); Nel and Petrulevicius (2003)
Hal.	Incerta Sedis	Incerta Sedis	Rosellichnus arabicus Genise and Bown 1996 (IN)	0.28	Abu Dhabi (U.A.E.)	5	Genise and Bown (1996); Genise (2000); Engel and Peñalver (2006)
Meg.	Megachilinae	Osmiini	Heriades spp. (Co)	Pleis	East Africa	$1 ?$	Engel (2001a)

5.2.1 Bee adaptations

Bees forage on plants to collect various rewards: pollen, nectar, oil, perfumes, resin, and some material for nesting like pieces of leaves and petals (Fig 5.1; Wcislo and Cane 1996; Labandeira 2000; Pouvreau 2004; Michener 2007). Foraging on plant rewards is a mechanically complex activity that requires certain handling skills, which differ from species to species (Westerkamp and Claßen-Bockhoff 2007). Various foraging strategies have been described among bees mainly based on pollen foraging behavior. Some taxa display floral specificity, restricting their flower visits to closely related plant taxa (pollen specialists) while other bee species are more opportunistic, exploiting a wide range of different flowers (pollen generalists) (Roberston 1925; Westrich 1989; Müller 1996a; Cane and Sipes 2006; Müller and Kuhlmann 2008; Dötterl and Vereecken 2010). To characterize the degree of bee-host plant specialization, different terms were progressively introduced by several authors to better reflect the reality of a continuum in bee-host breadth, from extreme specialization to extreme generalization (Roberston 1925; Rasmont 1988; Cane and Sipes 2006; Müller and Kuhlmann 2008). According to Müller and Kuhlmann (2008), the three main categories are:
(1) monolecty
(2) oligolecty, which is differentiated into three subcategories - narrow oligolecty, broad oligolecty, and eclectic olygolecty
(3) polylecty sensu lato which is also differentiated into three subcategories polylecty with strong preference, mesolecty and polylecty sensu stricto.

Females have a wide range of morphological and behavioral features for collecting and transporting pollen. Although some females carry pollen internally in the crop, most exhibit external modifications and behaviors for capturing pollen, and for grooming it from their bodies and loading into scopae (sensu Engel 2001a, contra Michener 1999) for transport. Several studies have demonstrated that oligolectic species often have specific structures for gathering pollen (Thorp 1979, 2000). These highly modified morphological structures are used by bees to gather pollen that is otherwise difficult to access (Müller 2006) or of large size (Pasteels and Pasteels 1979; Thorp 1979). For example, some species possess hooked hairs on their mouthparts or forelegs to collect pollen from hidden anthers (Shinn 1967; Thorp 1979; Parker and Tepedino 1982; Houston 1990, 1991; Harder and Barrett 1993; Müller 1995; Thorp 2000). Others have additional clusters of hairs, usually on the head, to accumulate pollen from nototribic flowers (Thorp 2000). Some specialized behaviors, such as vibration of flowers (buzz pollination), are also displayed by females to enhance the uptake of pollen, especially in plants with poricidal anthers like Ericaceae or Solanaceae (Michener 1962; Macior 1986, 1995; Buchmann 1983; Houston and Thorp 1984; Gottsberger and Silberbauer-Gottsberger 1988; Neff and

Fig 5.1 Modern bee-plant interactions. A. Andrena hattorfiana female foraging on pollen of Scabiosa sp. (Schrophulariaceae) (picture Edith Tempez). B. Macropis europaea female foraging on oil and pollen of Lysimachia vulgaris (Myrsinaceae) (picture Yvan Barbier). C. Anthophora plumipes male foraging on nectar of Lamiaceae (picture JeanMarc Michalowski). D. Megachile circumcincta with peace of leaf for cell linning (picture Nicolas J. Vereecken). E. Male of orchid bee collecting fragrances (picture Günter Gerlach). F. Worker of stingless bee Melipona cf. rufiventris (Meliponini) carrying resin (picture Claus Rasmussen). See plate section for color version.

Simpson 1988; Proença 1992; Müller et al. 1997). These specialized morphological stuctures and behaviors have evolved several times independently during the evolution of bees and in widely divergent taxa of both oligolectic and polylectic forms (Thorp 2000). However, many oligolectic bees do not show any evident morphological adaptations. Oligolecty is more often based on a combination of restricted phenology and behavior rather than any particular morphology attribute (Michez et al. 2008).

Pollen is not the only source of rewards for insects. Vascular plants produce fluid rewards such as nectar and oils. Their extraction and gathering can also require morphological adaptations. The morphological feature used for nectar collection is the labiomaxillary complex that may be differentially shortened or elongated to reach nectar reserves in shallow flowers or concealed in tubular corollas (Wcislo and Cane 1996). The bee mouthparts consist of a glossa and associated clasping structures from the labium and maxillae, and represent one of the most complicated apparati for fluid feeding among insects (Labandeira 2000). Moreover a rich diversity of prominent morphological specializations has originated for gathering floral oils, such as conspicuous setal brushes and combs on the bee's tarsi and sometimes, abdominal sterna (Vogel 1981, 1986). One of the more amazing innovations is the elongate forelegs of some Rediviva species, which are used to collect oils from the twinned elongate spurs of Diascia flowers (Vogel and Michener 1985; Steiner and Whitehead 1990; Wcislo and Cane 1996). Morphological specializations for the processes of floral fluids are also well known in bees, particularly the collection of floral components and their transfer to male metatibial organs in orchid bees (Sakagami 1965; Vogel 1966; Whitten et al. 1989; Kimsey 1984; Cruz-Landim and Franco 2001). Such structures are not also without their independent origin elsewhere among bees, such as the metafemoral organs of Arabian Eoanthidium, which have a remarkably similar morphological structure and may also be used for processing of plant fragrances (Engel 2004c).

Another resource for bees is the plant itself, especially its tissues. Some bee species are closely associated with plants as a source of materials for nest construction e.g. corbiculate bees and Megachilinae (Wedmann et al. 2009). They use resins, masticated leaves, cut petals, trichomes, or other plant materials sometimes along with mud to construct nests in cavities or in the soil (Müller 2011). Females can also use plant fragments like circular excisions of leaves and petals to line their brood cells e.g. some Megachile s.l. species, and some Osmiini, or masticated leaves to hide the nest e.g. some Osmia species (Rozen et al. 2010).

5.2.2 Plant adaptations

As pollen plays a predominant role in plant reproductive processes, repeated returns to the same plant species not only provide advantages for the forager but
are also an inevitable prerequisite for reliable cross-pollination (Westerkamp and Claßen-Bockhoff 2007). However, the pollen grains are removed in great quantity by bees to ensure their own reproduction (as nest cell provisions for their developing brood). Moreover, the pollen-gathering efficiency can be such that all pollen is entirely removed from a flower, leaving next to nothing for pollination (Westrich 1989; Müller 1996a; Müller et al. 2006; Westerkamp and Claßen-Bockhoff 2007). For example, Schlindwein et al. (2005) reported that 95.5% of the pollen produced by flowers of Campanula rapunculus were collected by its oligolectic pollinators, while only 3.7% contributed to pollination. Another study showed that among 41 bee species, 85% required the whole pollen content of more than 30 flowers to rear a single larva. The pollen of more than 1000 flowers is needed for some species (Müller et al. 2006). After each flower visitation, the female bee carefully grooms her body and transfers the pollen grains into the scopae, making them inaccessible for pollination (Westerkamp 1996). This huge quantity of pollen withdrawn from flowers for bee reproduction conflicts with the successful pollination of the host plant, resulting in a strong rivalry. Accordingly, the ecological relationship between bees and flowers may not be merely mutualistic (Inouye 1980; Westerkamp 1996, 1997; Thorp 2000; Irwin et al. 2001) but may be better viewed as a "balanced mutual exploitation" (Westerkamp 1996) wherein flowers must continually balance the need to attract bees for pollination on the one hand, and to restrict pollen losses on the other (Praz et al. 2008). Plants must therefore minimize pollen loss by narrowing the spectrum of their pollen-feeding visitors.

Plant and flower size, color and constriction of the corolla, presence of a landing platform, quantity and quality of nectar, scent, timing of flowering as well as morphology of the reproductive system are the consequences of selective pressure imposed by particular pollinators attracted by floral rewards. Several morphological traits of flowers are currently considered adaptations to prevent excessive pollen harvesting:
(1) heteranthery (Vogel 1993)
(2) anther dissimulation in nototribic flowers (Müller 1996a; Houston 2000; Thorp 2000), in narrow floral tubes (Thorp 1979, 2000; Parker and Tepedino 1982; Müller 1995; Müller and Kuhlmann 2003; Neff 2004; Müller 2006) or in keel flowers (Westerkamp 1997)
(3) concealment of pollen in poricidal anthers (Buchmann 1983; Harder and Barclay 1994)
(4) progressive pollen release (Erbar and Leins 1995; Schlindwein et al. 2005)
(5) zygomorphy (Vamosi and Vamosi 2010).

These adaptations can also maximize the contact between the stigma and the visitors e.g. nototribic flowers. These highly specialized bee flowers are mechanically
complex, and gathering pollen from such flowers requires some force and a coordinated movement of many external bee structures. Their access is thus limited to a guild of specialized and faithful pollinators (Westerkamp 1997).

5.3 Palaeoecology of bees and plants

Ancient associations can be explored in two principle ways: phylogeny linked to ecology and palaeobiology linked to modern biology. Under the first, a cladogram derived from diverse data sources can be used to reconstruct ecological or behavioral attributes such as relationships with host plants, insect herbivores, degree of sociality, nest architecture, etc. (Engel 2001c; Michez et al. 2007, 2008; Sedivy et al. 2008). However phylogenetic data are not always required to shed light on past plant-insect associations. Ecological interactions can be inferred through morphological analogies with extant organisms and systems. For example, the presence of palm bugs (Heteroptera: Thaumastocoridae) and fig wasps (Hymenoptera: Agaonidae) indicates the presence of palm and fig trees, respectively (Grimaldi 1996; Peñalver et al. 2006). Similarly, the presence of orchid bee fossils in a fauna can indicate the presence of Orchidaceae even in the absence of definitive orchid fossils (Engel 1999d). This secondary approach relies on both a detailed knowledge of modern biology coupled with paleobiology, and is centered around comparisons between fossil and extant material. Evidence of past plant-insect associations consists of three distinct but linked fossil records: insect body-fossils, plant bodyfossils, and trace fossils of their associations. This latter archive of associations is based on six principal types of evidence:
(1) plant reproductive biology indicating insect association
(2) insect-mediated plant damage
(3) dispersed insect coprolites
(4) insect gut contents
(5) plant-related structure of insect mouthparts and ovipositors
(6) taxonomic assignment to a modern descendant for which reliable ecological data exist (Labandeira 2000).

Unlike the trilobite that has left a prodigious fossil record, insects are more limited to numerous Lagerstätte and form a highly discontinuous record despite the tremendous number that could have been preserved. In many cases, the fossils are fragmentary showing few critical characters, so that studying them is often frustrating. Nonetheless, the fossil record of insects is growing and sheds considerable insight into the various phases of hexapod evolution (Grimaldi and Engel 2005). The reason for the relative scarcity of insect remains is their more infrequent
preservation in sedimentary matrix owing to various taphonomic factors, the degradation of the exoskeleton in some oxygenated environments, their diminutive proportions relative to the sediment grain size, and the generally lower number of freshwater (e.g. lacustrine) relative to marine deposits. The most notable exception is preservation in amber, which constitutes the most valuable record for insect fossils owing to its unique fidelity of preservation, with even the finest (even life-like) details faithfully conserved (Grimaldi and Engel 2005). Given that many insects were too small to escape entrapment when coming into contact with sticky plant exudates, their frequent preservation as biological inclusions is easily understood. Although amber is known from as far back as the Carboniferous, the earliest fossiliferous resins with insect inclusions date to the Early Cretaceous and about 125 megaannum. The amber record represents the last 30% of terrestrial plant and arthropod history, and is useful for the earlier evolution of otherwise extant clades. To investigate earlier episodes of insect history, deposits with greater geochronological persistence are necessary, such as lacustrine sediments, extending into the Late Palaeozoic (Labandeira 2002b; Grimaldi and Engel 2005). The earliest evidence of pollination is provided by compression-type material but this mutualism remains difficult to demonstrate because of the very indirect nature of the evidence for plant entomophily and insect pollen transfer (Labandeira 2002b). During the Late Jurassic to Early Cretaceous, the first pollinators of early angiosperms were probably generalized insects without adaptations for flower feeding, such as wasps, moths, thrips, beetles, and flies, from other seed plants possessing flower-like structures (Gnetales, Bennettitales and cycads). More plant-dependent insects followed in later stages such as bees in the Cretaceous and butterflies in the Tertiary. Unfortunately, fossils of bees are exceptionally rare, particularly in Cretaceous deposits (Table 5.1 and following sections). The scarcity of bees can be at least partially explained by their habitat preferences (Bennett and Engel 2006). Most species live in xeric areas outside of those forests that typically produced amber, or oustside of anoxic areas that produce most Lagerstätte (Michener 1979, 2007; Engel 2001a, 2004b; Grimaldi and Engel 2005). Fossil records of Apoidea are therefore too patchy to give great precision into the origin of each clade of bees. However, they are very useful for documenting minimal ages for particular clades and for studying their morphological and ecological evolution. The major deposits with bee fossils are known from the Cenozoic:

Dominican amber from the Early Miocene (~ 19 megaannum)
Florissant shale from the Oligocene (~ 34 megaannum)
Baltic amber from the middle Eocene (~ 45 megaannum)
These three deposits have produced the largest bee paleofaunas (Zeuner and Manning 1976; Engel 2001a, 2004b). Excluding these, only six older body fossils
have been discovered from isolated sites scattered around the world, and only two of which are from the Mesozoic era. Accordingly, plant body fossil morphology is critical for assessing the possibility of insect-mediated pollination, especially the structure of reproductive units. Many attributes in the plant fossil record have been inferred to indicate the presence of biotic pollination: accessibility and modifications of flower reproductive structures to attract insects, presence of rewards such as food, nesting material or others to lure potential pollinators, features that promote transfer of pollen or enhance certain pollination types, and the size and surface properties of pollen provide circumstantial evidence for insect pollination (Labandeira 2000, but see previous chapter).
Direct reliable trace fossils of bee-plant associations are quite rare. In many herbivorous clades, the insect-mediated plant damages are the most useful and common records of past relationships, e.g. galling, mining. But bee damages are very uncommon except for damages for nest construction. Given their interesting relationship with plants as nesting resources, the diversity of megachiline bees (Megachile and related genera and tribes) in past epochs can be ascertained from not only the remains of actual bee specimens but also from the record of their activities on the surrounding flora (Sarzetti et al. 2008; Wedmann et al. 2009). Such evidence may further help to expand our current understanding of the diversity of these tribes in the past, despite the usual paucity of bee specimens in the fossil records (Wedmann et al. 2009). Preservation of nesting activities is also observed for some lineages like Halictidae digging nests in the soil (described in the ichnofamily Celliformidae, for a review see Genise 2000). However, such paleoichnological data (leaf damage, fossil nests) must be carefully considered before any definitive conclusions from misidentifications become common (Engel 2001a, 2004a).

Records of pollen grains on fossil insects and in coprolites provide additional circumstantial evidence for ancient bee-flower interactions. But the presence of pollen on the fossilized body does not exclude the possibility of flower visitation without pollination. Because evidence of plant-pollinator interactions is exceedingly rare in the fossil record, our current knowledge of ancient pollination is mainly indirectly inferred from specialized morphological features of fossilized insects (Grimaldi 1999; Ramirez et al. 2007; Michez et al. 2007) and flowers (Crepet 1979; Crepet et al. 1991; Gandolfo et al. 2004).

5.4 The "proto-bee" and the Cretaceous record of bees

5.4.1 The "proto-bee"

Hypotheses about the origin of the first bee are based on (i) the oldest bee fossil records, (ii) the origin and fossil record of their closest relatives (Crabronidae,
spheciform Apoidea), and (iii) the origin of their likely host plants (Angiosperm). While the oldest spheciforms are those species of Angarosphex from the Barremian of Brazil's Crato Formation (~125-130 megaannum) and other Early Cretaceous deposits (Grimaldi and Engel 2005), the putative sister group of bees, Crabronidae, are not known until the Early mid Cretaceous (Antropov 2000; Bennett and Engel 2006). The diversification of spheciform Apoidea occurred during the Early Cretaceous (Grimaldi and Engel 2005; Bennett and Engel 2006) (Fig 5.2). Based on the record of fossil Crabronidae (Antropov 2000; Bennett and Engel 2006) and these other factors, a rational timing supposes the origin of bees around the Early mid Cretaceous, or about 125-120 megaannum (Engel 2001a, 2004b, 2011; Grimaldi and Engel 2005; Ohl and Engel 2007). The oldest bee trace is from the Cenomanian of Arizona (94 megaannum), although Cellicalichnus dakotensis is quite contemporary in its form (Table 5.1, Elliott and Nations 1998). The descriptions of fossil bee nests from the Triassic were incorrect (Lucas et al. 2010). Angiosperms are hypothesized as having first originated in the xeric interior of Gondwanaland and during the earliest Cretaceous (Raven and Axelrod 1974; Taylor and Hickey 1992), and this is likely also where bees first diverged from their common ancestor with Crabronidae (Engel 2001a, 2004b). In summary, bees likely diverged from among the apoid wasps sometime in the late Early Cretaceous and in the Southern Hemisphere (Engel 2001a, 2004b; Grimaldi and Engel 2005). Molecular phylogenies of Apidae and Halictidae associated with estimates of divergence times support this conclusion and also that bee diversification took place during the Early mid Cretaceous (Danforth et al. 2004; Cardinal et al. 2010; Ware et al. 2010).

5.4.2 From carnivorous predator to phytophagous pollen forager

Pollen consumption has generally been the evolutionary precursor to pollination (Labandeira 1998). Pollen contains vitamins, starch, lipids, proteins, and amino acids, which provide nutritional requirements for most animal species (Roulston and Cane 2000). Apoid wasps have a predatory diet high in protein. The protein value of pollen is high enough for apoid wasp nutritional requirements, ranging from 12-60 \% (Roulston et al. 2000). They also assimilate cholesterol from their prey, and some pollen contains equivalent sterols (Dötterl and Vereecken 2010). Moreover, several bodies of evidence suggest that apoid wasps already displayed attributes suitable to becoming pollen consumers and foragers, as well as pollinators of angiosperms.

Apoid wasps existed and diversified when the first angiosperms appeared. The niche of pollen food was probably not yet overexploited when some spheciforms initially diverged to become bees.
Apoid wasps had mandibulate mouthparts more suitable for chewing pollen than piercing-sucking mouthparts (Crepet 1979).

Fig 5.2 Hypothese of bee evolution according to Danforth et al. (2006) with bee fossils mapped on. For an alternative interpretation, refer to Engel (2004b) and Ohl and Engel (2007). 1. Melittosphex burmensis. 2. Cretotrigona prisca. 3. Probombus hirsutus.
4. Paleomacropis eocenicus. 5. Halictus?savenyei. 6. Paleomelitta nigripennis. 7. Andrena? clavula. 8. Chilicola electrodominica. Drawings from the top to the bottom: Proplebeia dominicana (from Camargo et al. 2000; scale = 1mm); Paleomacropis eocenicus (from Michez et al. 2007; scale = 1mm); Divisestylus brevistamineus (from Crepet et al. 2004).

Apoid wasps flew very well and are good at hovering, allowing them to forage rapidly on many flowers.
Apoid wasps constructed nests and transported food (arthropod prey) to feed their offspring. They were then able to substitute prey transport for pollen transport.
Plumose setae, often integral in pollen-collecting structures, may have been present in spheciforms before subsequent cooption of their original function. For example, plumose setae were likely originally used for thermoregulation (Heinrich 1996).

Plesiomorphically apoid wasps, like most aculeate Hymenoptera, are coldblooded and live mainly in hot xeric climates. Plumose setae are useful for capturing heat and permitting the body to warm up more quickly after the torpor of cold desert nights. This character would have appeared randomly and could be considered an exaptation. Much like the origin of feathers among therapod dinosaurs for thermoregulation prior to their eventual use in flight by their descendents - the birds, so too, does it appear that branched hairs may have predated pollen collection and even bees, representing an earlier evolutionary solution to a completely different problem.

Ancestral specialist behavior could have been a key feature allowing the protobee to promote fixation of its new foraging behavior i.e. pollen foraging. Indeed, a bee's foraging behavior exhibits particular constraints:
pollen-collecting behavior is very complex (Wcislo and Cane 1996) and protobees could have been cognitively limited to use a large range of hosts
bees invest strongly in their offspring. Females of bees lay only a few eggs and generalist risk-takers could have been selected against. Many pollen contents could have been unsuitable for adult and larval feeding (Praz et al. 2008).
host perception seems more complex than in other phytophagous insects. Bees detect color, shape, size and scent of flowers (Raine et al. 2006).
specialization can increase the selection of pollen-foraging efficiency (Strickler 1979).

All these characteristics have probably forced the specialization and its inheritance.

Although there does exist some clear examples of transitions from polylecty to oligolecty, growing evidence suggests that oligolecty might be the ancestral state in bees (Danforth et al. 2006). Firstly, many generalist bee species have evolved from oligolectic ancestors. For example, in several anthidiine bees as well as in pollen-collecting masarine wasps, polylecty appears to be a derived trait (Müller 1996b; Mauss et al. 2006). In the genus Andrena, oligolecty is also assumed
to be the plesiomorphic condition and polylecty has evolved independently several times (Larkin et al. 2008). Shifts from oligolecty to polylecty are more frequent than the reverse (Müller 1996b; Michez et al. 2008). Secondly, basal clades of most bee lineages such as Dasypodainae, Melittinae, Fideliinae, Rophitinae etc. include a high proportion of oligoleges (McGinley and Rozen 1987; Westricht 1989; Wcliso and Cane 1996; Engel 2004d; Danforth et al. 2006; Patiny et al. 2008; Michez et al. 2008). These facts could be a hint that, in general, polylecty is a derived foraging strategy that has evolved multiple times among bees. Plant associations mapped across bee phylogenies have only recently begun to become more and more prominent in studies (Müller 1996b; Engel 2002b, 2004d; Michez et al. 2008; Sedivy et al. 2008) so the body of evidence for this is continuing to grow but it does appear that the Danforth et al. (2006) hypothesis of polarity is widely supported.

Once foraging behaviors took place and larvae were able to digest the pollen as protein and lipid resources, it was perhaps not long before pollen foraging became a significant advantage for survival. Searching for regularly and conspicuously displayed pollen rewards would have been easier than seeking and subduing mobile prey, which generally tried to conceal itself (Engel 2001a, 2004b). Under this scenario, strong selective pressures would quickly stabilize any lineage toward becoming "bees".

5.4.3 To bee or not to bee? Burmese amber and the conceptual challenge of stem groups

The report of the Burmese amber apoid, Melittosphex, is an immensely interesting and important contribution to the fossil history of the superfamily, alongside the detailed monographic treatment of Antropov (2000). This particular fossil was introduced with much fanfare and bravado as the "oldest fossil bee." However, several conceptual challenges make it difficult to determine whether this species truly provisioned its nests with pollen and nectar, and that its larva was an obligate consumer of such resources. As noted many times before, bees are those ecologically dominant, apoid wasps that, as adults, collect pollen and nectar for exclusive consumption by their larvae. Accordingly, any lineage after the evolutionary novelty of obligate pollen-feeding larvae is a bee, while any lineage diverging before this is not. Thus, is this fossil species actually a bee, or rather a predatory apoid wasp sister to bees? This is not a specific criticism of Melittosphex but instead a philosophical question highlighting the difficulty of identifying any true, stem-group bee. At what point must we accept ignorance as our answer rather than a definitive attribution to the ecological clade we recognize as bees? As noted by Ohl and Engel (2007), it would appear that in order to make Melittosphex a bee, the definition of "bee" has to be set on a restricted set of features, expanding "bees" to include organisms that may or may not actually
perform the ecological role that has made the group so very famous - namely, their mutualistic association with flowering plants. Rather than the traditional concept of bees as essentially vegetarian derivatives of the apoid wasps, that is, adults collecting pollen and nectar which are then consumed by the larvae (features entirely unknown for the fossil), the attribution as a "bee" is based solely on branched hairs and a slightly enlarged hind tarsal article, rather than positive evidence of pollen feeding. Thus, Melittosphex, which may have been predatory like other wasps, is accorded bee status simply by its close relation to actual bees rather than for an exhibition of true bee-like habits or ecology. The assertion that branched-hairs automatically indicates pollen collection is erroneous as some predatory wasps, such as sapygids, have identical hairs while masarine wasps and a crabronid wasp (Krombeinictus) lack them, yet successfully collect and provision pollen. Moreover, some bees, like hylaeines and euryglossines, effectively lack such plumose hairs and transport pollen in the crop (Michener 1965, 2007; Torchio 1984). The only available specimen of Melittosphex is a poorly preserved male, the sex that does not collect pollen and provision if it was a bee, and so any pollen (if actually present) on its body must be incidental, just as occurs on many specimens of male and female apoid wasps. Male and female apoid wasps are often captured with pollen on their bodies since they visit flowers to consume nectar, but they do not store pollen or feed the pollen to their larvae (otherwise they would be no different from bees). There is no evidence that Melittosphex provisioned its brood cells with pollen. Naturally, this is an issue with all stem-group fossils and begs the question as to at what point we arbitrarily decide what is and what is not a "bee" (Ohl and Engel 2007). Interestingly, this trap with regard to Cretaceous, stem-group Anthophila was predicted by Engel (2001a, p. 155-8), and this represents a critical conceptual and practical challenge to the designation of any stem-group Anthophila as being "bees" rather than predatory wasps. In our estimation, the sole feature that distinguishes a bee from the wasps they evolved from is the specialization of the larva for consumption of a mixture of pollen, nectar, and/or floral oils; and the subsequent morphological adaptation of the female to provision the larva, otherwise they are merely anatomically peculiar wasps. Thus, in the absence of data on larval feeding (including features of the female conclusively associated with provisioning the larva with such resources), any fossil with a placement outside of the crown-group clade of true bees must be considered for what it truly is ... merely an apoid wasp that resembles and is allied to bees, and which may or may not be a "bee." From a conservative epistemological position, we cannot deem any stem group as a "bee" without such positive evidence and must remain agnostic as to their biological/ecological identity.

Regardless of these challenges, Burmese amber is dated as to near the AlbianCenomanian boundary (~ 100 megaannum) (Grimaldi et al. 2002; Cruickshank
and Ko 2003; Ross et al. 2010). Grimaldi et al. (2002) consider that the environment was tropical within an average temperature range of $32-55^{\circ} \mathrm{C}$. Ross et al. (2010) listed arthropod records of 36 orders, 216 families, and 228 species, mainly Diptera, Coleoptera and Hymenoptera. Melittosphex burmensis from these deposits has been placed in the monospecific family Melittosphecidae, apparently sharing only some synapomorphies with contemporary bees (Poinar and Danforth 2006). Branched hairs are putatively present on the body which, as mentioned, the authors use as a proxy for indicating pollen foraging behavior, but the only known specimen is a male and so this is a speculative conclusion. Nonetheless, the small size of M. burmensis, at around 3 mm , is consistent with the small size of contemporary angiosperms (Poinar and Danforth 2006; Crepet et al. 2004). Further exploration of mid Cretaceous deposits in Myanmar and elsewhere will hopefully bring evidence to more positively resolve the identity of this and any other stemgroup Anthophila.

5.4.4 Raritan amber: the first definitive bee remains

Raritan amber occurs throughout Cretaceous outcrops of the Atlantic Coastal Plain of eastern North America and is Turonian (~ 90 megaannum) in age (Grimaldi et al. 2000; Grimaldi and Nascimbene 2010). Origin of the amber is now understood to be from the Cupressaceae. The paleohabitat was an interdistributary system of shallow, brackish water channels that formed a delta in the mid to Late Cretaceous (Grimaldi and Nascimbene 2010). The proximity of freshwater is indicated by the diversity of adult insects that breed in freshwater such as Trichoptera. All indications are that New Jersey was at this time tropical or subtropical in climate and that angiosperms comprized a substantial part of the flora. Based on macrofossils and pollen analyses, there were more than 130 angiosperm taxa, including some entomophilous lineages like Clusiaceae, Ericales, Lauraceae, Palmae and Protaceae (Michener and Grimaldi 1988a). There is a total of 104 described species and 59 families of arthropods (Grimaldi and Nascimbene 2010). Only one bee fossil is described from these deposits, Cretotrigona prisca (Michener and Grimaldi 1988a, 1988b; Engel 2000b; but see Rasnitsyn and Michener 1991). This species is included in a derived taxon of the corbiculate Apinae - the Meliponini. This tribe includes extant eusocial species showing polylectic and resin-foraging behaviors. The presence of a corbicula indicates that C. prisca likely shared the same foraging and carrying behavior as its modern meliponine counterparts. Specific relationships to any plant family described from the deposit is unlikely as C. prisca would have been a generalist pollinator of many entomophilous taxa, like its modern relatives. Nonetheless, C. prisca demonstrates that bees with highly modified and specialized structures were already well-established by the Late Cretaceous.

5.5 Paleocene and Eocene bee fossils

5.5.1 Paleocene and Eocene characteristics

The Cenozoic began with the Paleocene epoch (65-55 megaannum) and was one of the warmest periods in Earth's history. At this time, "tropical" lineages were nearly ubiquitous in geographic distribution (Grimaldi and Engel 2005). Europe was composed of multiple land masses and archipelagos separated from Asia by an epicontinental seaway (Turgai Strait). Southern Europe bordered the northwestern bays of the Tethys Ocean, which later formed the Mediterranean Sea to its west. North America was also crossed by a deep sea and India was still isolated from the other continents. Climatically, the Eocene (55-38 megaannum) was the most dramatic episode in the Tertiary. During the Early Eocene, no large, standing regions of ice were present, even at the poles, but by the end of this epoch, the glaciation of Antarctica had begun. This global cooling had a critical impact on the global distributions of many plants and animals, including bees. There are presently thirteen documented deposits with bee fossils from the Paleocene and Eocene: Menat (-60 megaannum, France), Oise (-53 megaannum, France), Quilchena (-53 megaannum, Canada), Cambay (-52 megaannum, India), Messel/Eckfel (-49/-44 megaannum, Germany), MacBee/Republic (-49 megaannum, Canada/USA), Baltic region (-48/-45 megaannum, northern Europe), Rovno (-48/-45 megaannum, Ukraine), Rio Pichi-Leufú (-48 megaannum, Argentina), Puryear/Viola (middle Eocene, USA). Four contemporary bee families (Apidae, Halictidae, Melittidae and Megachilidae) and one extinct family (Paleomelittidae) have been described from these deposits based on 51 species and 178 body fossils specimens. It appears that the K/T transition had little effect on bee diversity at a higher level, although certainly those bees in the zones of the various extraterrestrial impacts would have been considerably effected, leading to perhaps localized extinctions of particular faunal elements but without global alterations of the families or subfamilies of Apoidea. However, the global cooling at the end of the Eocene, a noted period of mass extinction (EoceneOligocene transition), probably caused the extinction of many corbiculate lineages principally known from Baltic amber (Engel 2001c), as well as from Cambay amber (Rust et al. 2010; Engel, unpublished data).

5.5.2 Menat, France: an ancient "bee community"

The Menat deposit is of primary importance because it is the oldest deposit with more than one isolated bee fossil and it is the only one presently with such material from the Paleocene. Two fossils of long-tongued bees, Probombus hirsitus (Megachilidae) and Paleohabropoda oudardi (Apidae) and one ichnospecies have been described from this deposit (Table 5.1). These taxa probably lived in a wet and very warm climate. The area of Menat (~ 60 megaannum) was likely characterized by a forest of oak and willow trees distributed around a crater
lake (Piton 1940). The fauna comprized crocodiles, numerous large Mantodea (Chaeteessidae), Blattodea, Coleoptera (Buprestidae and Cerambycidae), Odonata (Megapodagrionidae) and very diverse Hemiptera (Fulgoroidea); all indicative of a warm palaeoclimate and a forest palaeoenvironment (Piton 1940; Nel and Roy 1996; Nel et al. 1997). Paleohabropoda oudardi was included in the Anthophorini, an old lineage where polylectic species are dominant (Iuga 1958; Michez et al. 2009a; Cardinal et al. 2010). Thus, association with a particular pollen host is unlikely. The presence of Megachilidae is more informative about potential hostplant associations. The description of one typical Megachile excision on a willow leaf could indicate a potential association between Megachilidae and Salicaceae at this time (Wedmann et al. 2009). Salicaceae could have been as an important a pollen resource for these fossil species as willow pollen is today for contemporary spring bees in Europe (Westrich 1989).

5.5.3 Cambay Basin, India: Early Eocene bees from an "isolated" subcontinent

Recently abundant Ypresian-aged amber has been discovered and reported on from the Cambay Basin in western India (Rust et al. 2010). This amber is rich in biological inclusions and comes from a time almost immediately before the complete connection of the Indian subcontinent with Asia when the subcontinent was still separated from Asia by oceanic waters and connecting archipelagos. This amber is of dipterocarp origin and is quite chemically distinctive (Rust et al. 2010). Interestingly, while work has only just begun on these deposits, four bee specimens are already known from such a limited sampling of inclusions (Rust et al. 2010; Engel, unpublished data). What is more interesting, is that the available material is representative of taxa otherwise known in Baltic amber, including a large fragmentary electrapine (perhaps of the genus Protobombus) and three melikertines of perhaps two distinct species. These are all eusocial lineages of corbiculate Apinae (Engel 2001a), and as such were likely polylectic and resin-collecting. Indeed, given the abundance of dipterocarps in this forest, it is highly probable that these species visited Dipterocarpaceae among other plant families for numerous resources including resins for nest construction. Given the immensity of the Cambay amber deposits (Rust et al. 2010), the potential for critical insights into Paleogene bees from a biogeographically and floristically distinct region is considerable.

5.5.4 Oise, France: early oil-collecting bees

Until relatively recently, fossil resins were poorly known from France (Nel and Brasero 2010). The situation changed dramatically after the discovery of an important 53 megaannum amber deposit in the department of Oise (Nel et al. 1999b). The dominance of an arborescent amber-producing species and the presence of freshwater in the French Eocene environs suggest a semi-deciduous forest
with a mosaic of gallery-forest mixed with dryer plant communities, in a deltaic paratropical region (De Franceschi and De Ploëg 2003). The amber-producing tree was deduced as Aulacoxylon sparnacense (Combretaceae or FabaceaeCaesalpinaceae). Brasero et al. (2009) provided an inventory of insects already described from the Oise deposit, with 59 families and 78 species, among them one female bee of Paleomacropis eocenicus (Melittidae, Macropidini) (Michez et al. 2007). Paleomacropis eocenicus was characterized by dense plumose setae on the inner and outer surfaces of the mesobasitarsus and long, erect setae on the metasoma. These kinds of setae could be linked to the collection of oil and pollen, as in the contemporary oil-collecting bee genus Macropis. Indeed, the oil of Lysimachia flowers (Primulaceae) is harvested by Macropis females using specialized setae on the inner surface of their pro- and mesobasitarsi (Vogel 1976; Cane et al. 1983; Michez and Patiny 2005). Moreover, dry pollen is initially held at the same time by the simple, long, erect setae of the metasomal sterna (Cane et al. 1983). Based on molecular clock analyses, the stem of Lysimachia was dated to around 41 meg aannum (28-52 megaannum) (Renner and Schaeffer 2010). The plausible temporal coincidence between Paleomacropis and proto-Lysimachia could support the notion that Macropis and Lysimachia coevolved from the onset, even if the oldest fossil record of Lysimachia consists of fossil seeds from late mid Miocene of Jutland, Denmark (Hao et al. 2004). Other plant families producing oil, like Malpighiaceae (Davis et al. 2002), are known from the Eocene and could have been alternative host plants for Paleomacropis eocenicus.

5.5.5 Baltic amber: a diverse and abundant paleofauna for bees

Baltic amber represents the most diverse paleofauna and paleoflora described in the world (Weitschat and Wichard 2010). The dating of this deposit was debated for a long time, but today most evidence support Baltic amber as either middle Eocene (~ 45 megaannum) or late mid Eocene to Early Eocene (48-50 megaannum). The source plant of the amber has also been debated, with evidence supporting either a Pinaceae producer (based on inclusions such as wood remains, male cones and needles) or Sciadopityaceae (based on FTIR chemotaxonomic inferences) (Engel 2001a; Wolfe et al. 2009). The palaeohabitat was probably very similar to contemporary pine forests of the South Atlantic Coastal Plain of North America (from North Carolina to Florida). At lower elevations the amber forest was adapted to paratropical climates (savannah woods) with a population of conifer and palm trees. Moreover, the forest must have had lightly wooded areas with various different habitat types (Weitschatt and Wichard 2010). Among plant inclusions, branched epidermal trichomes of oak tree leaves and flower buds are very common. With more than 98% of all embedded animal inclusions, the Arthropoda are most frequently represented in Baltic amber. Weitschat and Wichard (2010) listed 539 families including 1535 genera and 3068 species. Engel (2001a) listed

36 species and 18 genera of bees, with one species of Ctenoplectrella subsequently added (Engel 2008). These descriptions were based on 160 specimens (Table 5.1), although even more are known in collections today, which represent the second most important and abundant deposit for bee body fossils after Dominican amber. Only four specimens, representing three species, are short-tongued bees; perhaps not surprising as most are not resin collectors, typically nest in the soil, and are often more diverse in xeric habitats. Most are long-tongued taxa of the Apidae or Megachilidae, and all are known from females except Ctenoplectrella viridiceps, where both sexes are known. All species from Baltic amber exhibit morphological structures for pollen collection:
a corbicula for those Electrapini, Electrobombini, Melikertini and Meliponini a metasomal scopa for those Ctenoplectrellini, Glyptapini and Prolithurgini
a hind leg scopa for those Boreallodapini, Halictini, Macropidini and Paleomelittidae.

Based on comparisons with extant taxa, the eusocial species (Electrapini, Electrobombini, Melikertini), the solitary Xylocopinae (Boreallodapini) and Halictini from Baltic amber were probably polylectic while Eomacropis could have been oligolectic as modern Melittidae (Michez et al. 2008). Engel (2001a) describes Eomacropis without any particular morphological adaptation to collect oil as the actual Macropis do, but the unusual long glossa of the female could have been a particular adaptation to a special host plant. Just as extant polylectic taxa are dominant in tropical and subtropical regions (Michener 1979), so too were these groups apparently dominant in number and diversity during the middle Eocene of Europe (Engel 2001a, 2004b; Wappler and Engel 2003).

5.6 Oligocene bee fossils

5.6.1 Oligocene characteristics

The Eocene-Oligocene transition is a well-documented episode of climate change and extinction. Average global temperature dropped from near $22^{\circ} \mathrm{C}$ to $12^{\circ} \mathrm{C}$. Many lineages of corbiculate bees disappeared during this global cooling event (Engel 2001c), and it appears that the bee fauna underwent a considerable shift around this time, from principally ancient lineages to largely modern forms (Engel 2004b). Eight deposits with bee remains or traces have been documented: Florissant (-34 megaannum, USA), Badlands (Upper Oligocene, USA), the French deposits of Aix-en-Provence, Bois d'Asson, Camoins-les-Bains, Céreste and Marseille (Middle to Upper Oligocene, France), and Rott (Upper Oligocene, Germany). Total material represents 62 body fossil specimens, 47 species, and two ichnospecies. All extant
families are present in these faunas with the exception of Stenotritidae, for which there is no fossil record, and all are preserved as compressions with little to no relief, particularly those from the diverse and prolific Florissant deposits of Colorado.

5.6.2 Florissant, Colorado: glimpses into the first "modern" bee fauna

Fossils from Florissant, Colorado, USA are compressions with low to no relief, formed in fine volcanic ash (Engel 2001a). This deposit is dated about 34 megaannum (Epis and Chapin 1974). The extant bee families represented in the Baltic amber (Apidae, Halictidae, Melittidae and Megachilidae) have also been described from this deposit with the addition of Andrenidae. Engel (2002a) revised the Florissant fauna of Halictidae, but the primary information for this fauna comes from the publications of T. D. A. Cockerell and is quite dated (see list in Table 5.1). Even if numerous and diverse taxa are present in the deposit - at least 36 body fossils, 34 species, 19 genera (Table 5.1) - body fossils are typically preserved only by wing venation or some structures of the legs and thorax, so accurate comparisons with living species as well as other fossil deposits are not entirely possible. Some attributions of species to extant genera are quite speculative and some, such as Ceratina disrupta, may be assignable only to Apoidea or even Aculeata incertae sedis. Furthermore, morphological structures associated with pollen collection are not discernible in the available material except under uncommon circumstances. Some species considered as cleptoparasites, based on the apparent absence of setae patches recognizable as scopae, need confirmation (e.g. Protomelecta brevipennis) and may represent poor preservation rather than definitive absence.

5.7 Neogene and quaternary bee fossils

5.7.1 Neogene and quaternary characteristics

The Neogene began 23.8 megaannum ago with the Miocene epoch. Climatic conditions were similar to the end of the Oligocene. As far as known, bee body fossils or traces have been described from 27 Miocene deposits: Bes-Konak Basin (22.5 megaannum, Turkey), Dominican amber (20 megaannum, Dominican Republic), Mexican amber (20 megaannum, Mexico), Sicilian amber (20 megaannum, Italy), Stewart valley (-14 megaannum, USA), Bilina Mine (Lower Miocene (LM), Czech Republic), Euboea (LM, Greece), Izarra (LM, Spain), Krottensee (LM, Czech Republic), Kudia River (LM, Russia), Kundratice (LM, Czech Republic), Radoboj (LM, Croatia), Rubielos (LM, Spain), Iki Island (Middle Miocene, Japan), Andance (Upper Miocene (UM), France), Biebrich (UM, Germany), Botchi river (UM, Russia), Böttingen (UM, Germany), Latah (UM, USA), Lleida (UM, Spain), Oeningen (UM, Germany), Parschlug (UM, Austria), Puesto Los Sauces (UM, Argentina), Randeck
(UM, Germany), Rusinga (UM, Kenya), Sainte-Reine (UM, France), Shandong (UM, China); and six Pliocene/Pleistocene deposits: Santander (2.5 megaannum, Colombia), Abu Dhabi (0.28 megaannum, UAE), Batu (Pleistocene, Malaysia), Eastern African copal (Pleistocene), Hukong (Pleistocene, Myanmar), Lockport (Pleistocene, USA). Based on the description of 84 species and 5 ichnospecies, all extant families are present except Stenotritidae with no described fossil at all (Table 5.1). The bee fauna is clearly modern in the Miocene deposits. As most of described species from Copal still exist, evolutionary significance of the Pliocene and Pleistocene concerns the origins of modern species.

5.7.2 Dominican and Mexican amber: the most recent paleofauna of bees

Dominican amber has been dated as Burdigalian in age (between 20.43 ± 0.05 megaannum and 15.97 ± 0.05 megaannum), the first and longest warming period of the Miocene (Poinar 2010). Dominican amber preserves the most diverse described bee fauna among Miocene deposits. All bee families have been recorded with the exception of Melittidae s.l. and Stenotritidae (Engel 2009). Among the twelve-recorded genera, only three genera (Augochlora, Euglossa and Megachile) are still present in the Greater Antilles, but only four are now extinct at a global scale (Eickwortapis, Nesagapostemon, Oligochlora and Proplebeia), although with close relatives among Central and South American taxa. The absence of Melittidae and Stenotrotidae in Dominican amber is expected as they are also absent today in Central and South America (Michener 2007; Michez et al. 2009b; Almeida and Danforth 2009). The bee fauna preserved in Dominican amber is largely equivalent to the modern Neotropical fauna, and quite distinct from those of Asia, Europe, and Africa. Mexican amber is roughly contemporaneous age and similarly harbors an abundant bee fauna, albeit mostly representing a single species, Nogueirapis silacea (Solórzano-Kraemer 2007).

Apidae are the most numerous in number of specimens (among the thousands) but only five species have been described (Table 5.1; Poinar 1998; Camargo et al. 2000; Engel 2009). All described apids that were probably resin collectors, but the high number of apine specimens is truly due to only one eusocial species, Proplebeia dominicana. Presence offoraged resin onthe corbiculae of some specimensisindirect evidence that Proplebeia species routinely and actively gathered resin from extinct Hymenaea (Fabaceae, resin source of Dominican amber) (Camargo et al. 2000). Moreover, one specimen was described with an attached pollinium of Meliorchis caribea (Orchidaceae) (Ramirez et al. 2007). This fossil constitutes a rare, direct observation of plant-pollinator interaction. Moreover, as the staminal filaments are fused to the style in the Orchidaceae, the anatomical match required for a pollinator to remove the pollinium is nearly identical to that necessary for its subsequent delivery (Ramirez et al. 2007). Proplebeia dominicana was therefore probably a pollinator
of Meliorchis caribea. But pollinia do not constitute an alimentary resource for stingless bee workers. Visitors of orchids forage on nectar or fragrances. But orchids can also deceive their visitors by not producing rewards and only mimicking alternative alimentary rewards of neighboring host plants (Vereecken and McNeil 2010). As M. caribea is included in the subtribe Goodyerinae, the fossil species probably offered nectar similar to some modern species of this tribe (Singer and Sazima 2001). Two other fossils probably foraged on Orchidaceae during the Miocene, Euglossa moronei and Eufriesea melissiflora (Engel 1999d). These bees are orchid bees (Euglossini) where the males of contemporary species mainly forage on orchids to collect fragrances (Dressler 1982; Michener 2007; Ramirez 2009). However, M. caribea is not a good candidate as a fragrance host plant for euglossines since Goodyerinae do not produce suitable scents. Euglossini instead are mainly associated with the orchid taxa Gongoreae, Catasetinae, Zygopetallinae, Lycastinae, Bifrenariinae and Oncidiinae (Dressler 1982).
In their degree of pollen specialization, all apid lineages described from Dominican amber are polylectic clades (Dressler 1982; Michener 2007). Among short-tongued bees, Halictidae are the most diverse with 11 species but known from only 13 specimens. The rarity of halictids in the Dominican amber record may be partly due to the fact that most species nest in the ground and do not collect resin as other bees, thus making contact and preservation unlikely. This is also true for the sole panurgine (Andrenidae) in Dominican amber (Rozen 1996). Although Panurginae are greatly oligolectic, the Anthemurgini show little diversification in such behavior.

5.8 General conclusion

5.8.1 Bee fossil diversity

Knowledge about bee fossils has improved dramatically during the last 15 years. About one-third of the 184 described fossil species have been documented within this time period, and historical species discovered prior to this are gradually undergoing revision and reassessment (Engel 2000b, 2002a; Nel and Petruvelicius 2003; Michez et al. 2009a; Kotthoff et al. 2011). As paleontology continues to experience a current Renaissance among the entomological community, the value of such data will only become more significant and refined. Even for lineages with relatively sparse records, such as bees (in comparison to the more prolific records of flies or beetles), profound improvements are undoubtedly in store as more and more deposits are discovered and more attention is focused on these resources. Already the scant data is overturning some elements of current dogma, such as the discovery of native fossil honeybees in North America (Engel et al. 2009). The revelation that Apis was once native to the New World during the Neogene with subsequent
post-Miocene extinction, revises traditional concepts of apine biogeography, with honeybees mimicking the pattern observed in the more completely understood records of horses (Equus caballus), gingkos, and the Chinese Tree of Heaven (Ailanthus), among many others. The prospect for future revelations of similar nature, ones perhaps entirely unexpected, is considerable. Accordingly, any study ignoring the fossil record, regardless of how meager, does so to its own jeopardy. If concerted efforts during such a brief span of time as 15 years can increase the available record by 33%, then it is staggering to conceive how much more fully complete this record may be 15-25 years from today. Truly we are only at the earliest dawn of paleomelittology.

While 59 deposits include at least one bee fossil and/or one likely bee trace, only ten deposits have revealed more than three bee fossils, highlighting the scarcity of bees in fossil deposits (Table 5.1). Moreover, there are presently three principle biases in this record: geographical, biological, and habitat based.

Firstly, the geological history of bees is "northern biased" (Fig 5.3; Engel 2004b; Engel and Peñalver 2006). There are merely five deposits in the Southern Hemisphere (Table 5.1), with all other localities distributed in the Northern Hemisphere. A growing number of suitable deposits are continuously being discovered in the Southern Hemisphere or from regions that were once south of the Equator but are no longer. Aside from suitable compression sites already known from South American and southern Africa (e.g. Late Cretaceous of Botswana), perhaps the most exciting are those southern amber locales such as Peru, Ecuador, Ethiopia (which during the Cenomanian was obviously more southerly), and the rich outcrops of Australia. Intense exploration of these and others is only just beginning. As already noted, our record of fossil bees will change profoundly in the years to come, hopefully eliminating at least this first bias.

Secondly, resin-foraging bees are likely to be over-represented in amber and copal deposits, which include both 41% of the described bee fossils (see examples in Fig 5.4). Excluding the hyperabundant stingless bee, Proplebeia dominicana, apids still represent 61% of species and 71% of specimens in amber and copal. In the modern fauna, apids represent 29% of species globally and can represent 35% or more of the species in some tropical habitats (Gonzalez and Engel 2004). Resin collectors more frequently come into contact with such substances and, although they are more adept at handling this resource, they are still significantly more likely to become entrapped, particularly when considering eusocial species where the increased numbers of individuals make the potential for "accidents" greater, pushing the numbers of such bees in amber higher. As such, resin foraging behavior could explain a large portion of this bias, although some component certainly does reside in the third, and last, obvious bias.

Unfortunately, the last bias may represent a hurdle more difficult to clear than the others. Large components of bee diversity are found in xeric habitats,

Fig 5.3 Mapping of the deposits including bee body fossils and traces. A. Deposits from Cretaceous, Paleocene and Eocene. B. Deposits from Oligocene, Miocene and Pleistocene.
regions not frequently represented in suitable fossil deposits and, when they are, they frequently lack the fine-scale sedimentary deposition necessary to preserve remains with sufficient detail to permit confident identification and comparison with modern counterparts. The small size of many bees, at least relative to many sedimentary sites that faithfully preserve larger animals such as vertebrates, and particularly the diminutive proportions predicted for the earliest of bees, may mean that the elimination of this habitat bias will be a long time in the works. For the foreseeable future, our record may be largely confined to more tropical, even wet tropical, habitats rather than the deserts that harbor our beloved objects of investigation.

Fig 5.4 Representative fossil bees. A. Cretotrigona prisca (New Jersey amber, USA, late Cretaceous; Engel 2000b). B. Paleohabropoda oudardi (Menat, France, Paleocene; Michez et al. 2009). C. Halictus petrefactus (Rubielos de Mora basin, Spain, Early Miocene; Engel \& Peñalver 2006). D. Oligochlora eickworti (Dominican amber, Early Miocene; Engel 1996). E. Thaumastobombus andreniformis (Baltic amber, middle Eocene; Patiny et al. 2007). F. Protobombus messelensis (Messel, Germany, middle Miocene; Wappler \& Engel 2003).

5.8.2 Evidence of bee-plant interactions

Among the six principal types of evidence of past association between insects and plants (see previous chapter), two are quite common in bee fossil records: beemediated plant damage (Megachile damage for nest construction) and plant-related
structure of bee-body fossil (morphological structure associated to pollen, nectar and oil foraging). We can synthesize the succession of plant-associated features:
(1) first evidence of plumose hairs in Melittosphex burmensis (-100 megaannum). This feature is present in all following bees (Michener 2007).
(2) small size likely adapted to small flower in Melittosphex burmensis (-100 megaannum). The size increased maybe linked to the evolution of polylecty (Thorp 1979).
(3) long tongue in Cretotrigona prisca (-70 megaannum) to collect nectar in deep flower. This feature is present in all extant Megachilidae and Apidae and some "short-tongued bees" (Roig-Alsina and Michener 1993; Alexander and Michener 1995).
(4) first corbicula in Cretotrigona prisca (-70 megaannum). This feature likely derived from hind-leg scopa and is present in the clade of corbiculate bees (Kawakita et al. 2008).
(5) earliest evidence of scopa in Paleohabropoda oudardi (-60 megaannum). Hind-leg scopa is present in most non-cleptoparasite taxa (Michener 2007).
(6) first evidence of oil-collecting setae in Paleomacropis eocenicus (-53 megaannum). Features associated with oil foraging are present in some unrelated clades of modern bees like Melittidae and Apidae (Renner and Schaefer 2010).
(7) metasomal scopae in Baltic Megachilid bees
(8) earliest evidence of modified male hind tibia in Euglossa cotylisca (2.5 meg aannum). This feature is present in all males of extant orchid bees (Ramirez et al. 2010).

We also characterize past association thanks to taxonomic assignment to a modern descendant for which reliable ecological data exists, but this evidence is more speculative. The other archives of associations, plant reproductive biology indicating narrow bee-association, dispersed coprolites, and gut contents are no longer available in the present records.

5.8.3 Importance of paleobiological studies

Fossils provide a rare opportunity to study not only the origin and (co)-evolution of clades, but also their ecology, offering a unique window on past interactions. The functioning of ancient ecosystems has a direct bearing on the evolution of entire guilds, the diversification of specific lineages, and the ability of communities to respond to extrinsic changes such as climatic shifts. While much can be deduced from extending knowledge of current ecosystem operations and plant-hostherbivore associations into past epochs, at least for those in which the individual operators are presumed to have functioned similar to their modern counterparts,
the power of this exercise pales in comparison to any direct views into ancient communities themselves. This is all the more critical with progressively more antique ecologies in which there may be guilds and lineages represented that left no survivors or ecologically-analogous taxa. The paleontological forefront is as important today as is the application of tools such as molecular and developmental biology, comparative anatomy and physiology, and the biochemistry and energy flow of entire ecosystems. Ignoring fossils compromises understanding of evolution.

Acknowledgement

Thanks to Bernard Vaissière and Claus Rasmussen for sending references. Edith Tempez, Yvan Barbier, Jean-Marc Michalowski, Nicolas Vereecken, Günter Gerlach and Claus Rasmussen generously provided pictures of modern bees. Thibaut De Meulemeester kindly proofread an early version of the manuscript.

References

Alexander, B. A. (1992). An exploratory analysis of cladistic relationships within the superfamily Apoidea, with special reference to sphecid wasps (Hymenoptera). Journal of Hymenoptera Research, 1, 25-61.
Alexander, B. A. and Michener, C. D. (1995). Phylogenetic studies of the families of short-tongued bees (Hymenoptera:Apoidea). The University of Kansas Science Bulletin, 55, 377-424.
Almeida, E. A. B. and Danforth, B. N. (2009). Phylogeny of colletid bees (Hymenoptera: Colletidae) inferred from four nuclear genes. Molecular Phylogenetics and Evolution, 50, 290-309.
Antropov, A. V. (2000). Digger wasps (Hymenoptera, Sphecidae) in Burmese amber. Bulletin of the Natural History Museum, Geology Series, 56, 59-77.
Arillo, A., Nel, A. and Ortuño, V. (1996). Two fossil bees from the Oligocene of Izarra (Alava, Spain) (Hymenoptera,

Apoidea). Bulletin de la Société Entomologique de France, 101, 59-64.
Bachmayer, F., Symeonidis, N. and Theodoropoulos, D. (1971). Einige Insektenreste aus den Jungtertiären Süsswasserablagerungen von Kumi (Insel Euboea, Griechenland). Annales Géologiques des Pays Helléniques, 23, 165-174.
Baroni Urbani, C. (1980). First description of fossil gardening ants (amber collection Stuttgart and Natural History Museum Basel; Hymenoptera: Formicidae. I: Attini). Stuttgarter Beiträge zur Naturkunde, Serie B (Geologie und Paläontologie), 54, 1-13.
Bennett, D. J. and Engel, M. S. (2006). A new moustache wasp in Dominican Amber, with an account of apoid wasp evolution emphasizing Craboninae (Hymenoptera: Crabonidae). American Museum Novitates, 3529, 1-10.
Brasero, N., Nel, A. and Michez, D. (2009). Insects from the Early Eocene
amber of Oise (France): diversity and palaeontological significance. Denisia, 26, 41-52.
Bronstein, J. L., Alarcòn, R. and Geber, M. (2006). Transley review: the evolution of plant-insect mutualisms. New Phytologist, 172, 412-28.
Brooks, H. K. (1955). Healed wounds and galls on fossil leaves from the Wilcox deposits (Eocene) of Western Tennessee. Psyche, 62, 1-9.
Brothers, D. J. (1975). Phylogeny and classification of the aculeate Hymenoptera, with special reference to Mutillidae. University of Kansas Science Bulletin, 50, 483-648.
Brothers, D. J. (1998). Phylogeny and evolution of wasps, ants and bees (Hymenoptera, Chrysidoidea, Vespoidea and Apoidea). Zoologica Scripta, 28, 233-49.
Buchmann, S. L. (1983). Buzz pollination in angiosperms. In Handbook of Experimental Pollination Biology, ed. C. E. Jones. New York, NY: Van Nostrand Reinhold, pp. 73-113.
Camargo, J. M. F. d., Grimaldi, D. A. and Pedro, S. R. M. (2000). The extinct fauna of stingless bees (Hymenoptera, Apidae, Meliponini) in Dominican amber: two new species and redescription of the male of Problebeia dominicana (Wille and Chandler). American Museum Novitates, 3293, 1-24.
Cane, J. H. and Sipes, S. D. (2006). Characterizing floral specialization by bees: analytical methods and a revised lexicon for oligolecty. In PlantPollinator Interactions: Specialization and Generalization, ed. N. M. Waser and J. Ollerton. Chicago, MI: University of Chicago Press, pp. 99-122.
Cane, J. H., Eickwort, G. C., Wesley, F. R. and Spielholz, J. (1983). Foraging,
grooming and mate-seeking behaviors of Macropis nuda (Hymenoptera, Melittidae) and use of Lysimachia ciliata (Primulaceae) oils in larval provisions and cell linings. American Midland Naturalist, 110, 257-64.
Cardinal, S., Straka, J. and Danforth, B. N. (2010). Comprehensive phylogeny of apid bees reveals the evolutionary origins and antiquity of cleptoparasitism. Proceedings of the National Academy of Sciences USA, 107, 16207-211.
Cockerell, T. D. A. (1906). Fossil hymenoptera from Florissant, Colorado. Bulletin of the Museum of Comparative Zoology, 50, 33-58.
Cockerell, T. D. A. (1907). A fossil honeybee. The Entomologist, 40, 227-9.
Cockerell, T. D. A. (1908a). Descriptions and records of bees. XIX. Annals and Magazine of Natural History, 8(1), 337-44.
Cockerell, T. D. A. (1908b). A fossil leafcutting bee. Canadian Entomologist, 40, 31-2.
Cockerell, T. D. A. (1908c). Descriptions and records of bees. XX. Annals and Magazine of Natural History, 8(2), 323-34.
Cockerell, T. D. A. (1909a). New North American bees. The Canadian Entomologist, 41, 393-95.
Cockerell, T. D. A. (1909b). Two fossil bees. Entomological News, 20, 159-61.
Cockerell, T. D. A. (1909c). Some European fossil bees. The Entomologist, 313-17.
Cockerell, T. D. A. (1910). A Tertiary leafcutting bee. Nature, 82, 429.
Cockerell, T. D. A. (1911a). Descriptions and records of bees. XXXIV. Annals and Magazine of Natural History, 8(7), 225-37.

Cockerell, T. D. A. (1911b). Fossil insects from Florissant, Colorado. Bulletin of the American Museum of Natural History, 30, 71-82.
Cockerell, T. D. A. (1913a). Some fossils insects from Florissant, Colorado. The Canadian Entomologist, 45, 229-33.
Cockerell, T. D. A. (1913b). Some fossils insects from Florissant, Colorado. Proceedings of the United States National Museum, 44, 341-6.
Cockerell, T. D. A. (1914). Miocene fossil insects. Proceedings of the Academy of Natural Sciences of Philadelphia, 66, 634-48.
Cockerell, T. D. A. (1917). New Tertiary insects. Proceedings of the United States National Museum, 52, 373-84.
Cockerell, T. D. A. (1923). Two fossil Hymenoptera from Florissant (Vespidae, Megachilidae). Entomological News, 34, 270-71.
Cockerell, T. D. A. (1925). Tertiary insects from Kudia River, Maritime Province, Siberia. Proceedings of the United States National Museum, 68, 1-16.
Crepet, W. L. (1979). Insect pollination: a paleontological perspective. BioScience, 29, 102-8.
Crepet, W. L., Friis, E. M. and Nixon, K. C. (1991). Fossil Evidence for the Evolution of Biotic Pollination. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 333, 187-95.
Crepet, W. L., Nixon, K. C. and Gandolfo, M. A. (2004). Fossil evidence and phylogeny: The age of major angiosperm clades based on mesofossil and macrofossil evidence from cretaceous deposits. American Journal of Botany, 91, 1666-82.
Cruickshank, R. D. and Ko, K. (2003). Geology of an amber locality in the Hukawng Valley, northern Myanmar.

Journal of Asian Earth Sciences, 21, 441-55.
Cruz-Landim, C. and Franco, A. C. (2001). Light and electron microscopic aspects of glands and pseudoglandular structures in the legs of bees (Hymenoptera, Apinae, Euglossini). Brazilian Journal of Morphological Sciences, 18, 81-90.
Danforth, B. N., Brady, S. G., Sipes, S. D. and Pearson, A. (2004). Single-copy nuclear genes recover Cretaceousage divergences in bees. Systematic Biology, 53, 309-26.
Danforth, B. N., Sipes, S. D., Fang, J. and Brady, S. G. (2006). The history of early bee diversification based on five genes plus morphology. Proceedings of the National Academy of Sciences USA, 103, 15118-23.
Davis, C. C., Bell, C. D., Mathews, S. and Donoghue, M. J. (2002). Laurasian migration explains Gondwanan disjunction: Evidence from Malpighiaceae. Proceedings of the National Academy of Sciences USA, 99, 6833-37.
De Franceschi, D. and De Ploëg, G. (2003). Origine de l'ambre des faciès sparnaciens (Eocène inférieur) du bassin de Paris: le bois de l'arbre producteur. Geodiversitas, 25, 633-47.
Dötterl, S. and Vereecken, N. J. (2010). The chemical ecology and evolution of bee flower interactions: a review and perspectives. Canadian Journal of Zoology, 88, 668-97.
Dressler, R. L. (1982). Biology of the orchid bees (Euglossini). Annual Review of Ecology and Systematics, 13, 373-94.
Elliott, D. K. and Nations, J. D. (1998). Bee burrows in the Late Cretaceous (Late Cenomanian) Dakota Formation, northeastern Arizona. Ichnos, 5, 243-53.

Engel, M. S. (1995). Neocorynura electra, a new fossil bee species from Dominican amber (Hymenoptera: Halictidae). Journal of the New York Entomological Society, 103, 317-23.
Engel, M. S. (1996). New augochlorine bees (Hymenoptera: Halictidae) in Dominican amber, with a brief review of fossil Halictidae. Journal of the Kansas Entomological Society, 69, 334-45.
Engel, M. S. (1997). A new fossil bee from the Oligo-Miocene Dominican amber (Hymenoptera: Halictidae). Apidologie, 28, 97-102.
Engel, M. S. (1998a). Fossil honeybees and evolution in the genus Apis (Hymenoptera: Apidae). Apidologie, 29, 265-81.
Engel, M. S. (1998b). A new species of the Baltic amber bee genus Electrapis (Hymenoptera: Apidae). Journal of Hymenoptera Research, 7, 94-101.
Engel, M. S. (1999a). A new Xeromelissine bee in Tertiary amber of the Dominican Republic (Hymenoptera: Colletidae). Entomologica Scandinavica, 30, 453-8.
Engel, M. S. (1999b). The taxonomy of recent and fossil honeybees (Hymenoptera: Apidae; Apis). Journal of Hymenoptera Research, 8, 165-96.
Engel, M. S. (1999c). Megachile glaesaria, the first megachilid bee fossil from amber (Hymenoptera: Megachilidae). American Museum Novitates, 3276, 1-13.
Engel, M. S. (1999d). The first fossil Euglossa and phylogeny of the orchid bees (Hymenoptera: Apidae; Euglossini). American Museum Novitates, 3272, 1-14.
Engel, M. S. (2000a). Classification of the bee tribe Augochlorini (Hymenoptera: Halictidae). Bulletin of the American Museum of Natural History, 250, 1-90.

Engel, M. S. (2000b). A new interpretation of the oldest fossil bee (Hymenoptera: Apidae). American Museum Novitates, 3296, 1-11.
Engel, M. S. (2001a). A monograph of the Baltic Amber bees and evolution of the Apoidea (Hymenoptera). Bulletin of the American Museum of Natural History, 259, 1-192.
Engel, M. S. (2001b). The first large carpenter bee from the Tertiary of North America, with a consideration of the geological history of Xylocopinae. Transactions of the American Entomological Society, 127, 245-54.
Engel, M. S. (2001c). Monophyly and extensive extinction of advanced eusocial bees: insights from an unexpected Eocene diversity. Proceedings of the National Academy of Sciences USA, 98, 1661-1664.
Engel, M. S. (2002a). Halictine bees from the Eocene-Oligocene boundary of Florissant, Colorado (Hymenoptera: Halictidae). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 225, 251-73.
Engel, M. S. (2002b). Phylogeny of the bee tribe Fideliini (Hymenoptera: Megachilidae), with the description of a new genus from Southern Africa. African Entomology, 10, 305-13.
Engel, M. S. (2004a). Notes on a megachiline bee (Hymenoptera: Megachilidae) from the Miocene of Idaho. Transactions of the Kansas Academy of Sciences, 107, 97-100.
Engel, M. S. (2004b). Geological history of the bees (Hymenoptera: Apoidea). Revista de Tecnologia e Ambiente, 10, 9-33.
Engel, M. S. (2004c). A new species of the bee genus Eoanthidium with extraordinary male femoral organs from the Arabian Peninsula
(Hymenoptera: Megachilidae). Scientific Paper of the Natural History Museum University of Kansas, 34, 1-6.
Engel, M. S. (2004d). Fideliine phylogeny and classification revisited (Hymenoptera: Megachilidae). Journal of the Kansas Entomogical Society, 77, 821-36.
Engel, M. S. (2005). Family-group names for bees (Hymenoptera: Apoidea). American Museum Novitates, 3476, 1-33.
Engel, M. S. (2006). A giant honeybee from the middle Miocene of Japan (Hymenoptera: Apidae). American Museum Novitates, 3504, 1-12.
Engel, M. S. (2008). A new species of Ctenoplectrella in Baltic amber (Hymenoptera: Megachilidae). Acta Zoologica Academiae Scientiarum Hungaricae, 54, 319-24.
Engel, M. S. (2009). Two new Halictine bees in Miocene amber from the Dominican Republic (Hymenoptera, Halictidae). Zookeys, 29, 1-12.
Engel, M. S. (2011). Systematic melittology: where to from here? Systematic Entomology, 36, 2-15.
Engel, M. S. and Archibald, S. B. (2003). An Early Eocene bee (Hymenoptera: Halictidae) from Quilchena, British Columbia. The Canadian Entomologist, 135, 63-9.
Engel, M. S. and Peñalver, E. (2006). A Miocene Halictine bee from Rubielos de Mora Basin, Spain (Hymenoptera: Halictidae). American Museum Novitates, 3503, 1-12.
Engel, M. S. and Perkovsky, E. E. (2006). An Eocene bee in Rovno amber, Ukraine (Hymenopetra: Megachilidae).
American Museum Novitates, 3506, 1-12.
Engel, M. S. and Rightmyer, M. G. (2000). A new augochlorine bee species in

Tertiary amber from the Dominican Republic (Hymenoptera:Halictidae). Apidologie, 31, 431-6.
Engel, M. S., Hinojosa-Díaz, I. A. and Rasnitsyn, A. P. (2009).
A honeybee from the Miocene of Nevada and the biogeography of Apis (Hymenoptera:Apidae:Apini). Proceedings of the California Academy of Sciences, 60, 23-38.
Epis, R. C. and Chapin, C. E. (1974). Stratigraphic nomenclature of the Thirtynine Mile volcanic field, central Colorado, US. Geological Survey Bulletin, 1395-C, 1-23.
Erbar, C. and Leins, P. (1995). Portioned pollen release and the syndromes of secondary pollen presentation in the Campanulales-Asterales complex. Flora, 190, 323-38.
Frič, A. and Bayer, E. (1901). Studien im Gebiete der Böhmischen Kreideformation. Palaeontologische Untersuchungen der einzelnen Schichten. Archiv der Naturwissenschaftlichen Landesdurchforschung von Böhmen, 11, 1-184.
Gandolfo, M. A., Nixon, K. C. and Crepet, W. L. (2004). Cretaceous flowers of Nymphaeaceae and implications for complex insect entrapment pollination mechanisms in early angiosperms. Proceedings of the National Academy of Sciences USA, 101, 8056-60.
Genise, J. F. (2000). The ichnofamily Celliformidae for Celliforma and allied ichnogenera. Ichnos, 7, 267-82.
Genise, J. F. and Bown, T. M. (1996). Uruguay Roselli 1938 and Rosellichnus, N. Ichnogenus: two ichnogenera for clusters of fossil bee cells. Ichnos, 4, 199-217.
Genise, J. F. and Verde, M. (2000). Corimbatichnus fernandezi: a cluster
of fossil bee cells from the late cretaceous-early tertiary of Uruguay. Ichnos, 7, 115-25.
Gonzalez, V. H. and Engel, M. S. (2004).
The tropical Andean bee fauna (Insecta:Hymenoptera:Apoidea), with examples from Colombia. Entomologische Abhandlungen, 62, 65-75.
Gottsberger, G. and SilberbauerGottsberger, I. (1988). Evolution of flower structures and pollination in Neotropical Cassiinae (Caesalpiniaceae) species. Phyton (Austria), 28, 293-320.
Grimaldi, D. (1996). Amber: Window to the Past. New York, NY: American Museum of Natural History.
Grimaldi, D. (1999). The coradiations of pollinating insects and angiosperms in the Cretaceous. Annals of the Missouri Botanical Garden, 86, 373-406.
Grimaldi, D. and Engel, M. S. (2005). Evolution of the Insects, Cambridge, UK: Cambridge University Press.
Grimaldi, D. and Nascimbene, P. C. (2010). Raritan (New Jersey) amber. In Biodiversity of Fossils in Amber from the Major World Deposits, ed. D Penney. Manchester, UK: Siri Scientific Press, pp. 167-91.
Grimaldi, D., Lillegraven, J. A., Wampler, T. P., Bookwalter, D. and Shedrinsky, A. (2000). Amber from Upper Cretaceous through Paleocene strata of the Hanna Basin, Wyoming, with evidence for source and taphonomy of fossil resins. Rocky Mountain Geology, 35, 163-204.
Grimaldi, D., Engel, M. S. and Nascimbene, P. C. (2002). Fossiliferous Cretaceous amber from Myanmar (Burma): its rediscovery, biotic diversity, and paleontological significance. American Museum Novitates, 3361, 1-71.

Hao, G., Yuan, Y.-M., Hu, C.-M., Ge, X.-J. and Zhao, N.-X. (2004). Molecular phylogeny of Lysimachia (Myrsinaceae) based on chloroplast $t r n \mathrm{~L}-\mathrm{F}$ and nuclear ribosomal ITS sequences. Molecular Phylogenetics and Evolution, 31, 323-39.
Harder, L. D. and Barclay, R. M. R. (1994). The functional-significance of poricidal anthers and buzz pollination: controlled pollen removal from dodecatheon. Functional Ecology, 8, 509-17.
Harder, L. D. and Barrett, S. C. H. (1993). Pollen removal from Tristylous Pontederia Cordata: effects of anther position and pollinator specialization. Ecology, 74, 1059-72.
Heer, O. (1849). Die Insektenfauna der Tertiärgebilde von Oeningen und von Radoboj in Croatien, Leipzig, Germany: W. Engelmann.
Heinrich, B. (1996). The Thermal Warriors: Strategies of Insect Survival. Cambridge, MA: Harvard University Press.
Hinojosa-Díaz, I. A. and Engel, M. S. (2007). A new fossil orchid bee in Colombian copal (Hymenoptera: Apidae). American Museum Novitates, 3589, 1-7.
Houston, T. F. (1990). Descriptions of new paracolletine bees associated with flowers of Eremophila (Hymenoptera: Colletidae). Records of the Western Australian Museum, 14, 583-621.
Houston, T. F. (1991). Two new and unusual species of the bee genus Leiproctus Smith (Hymenoptera: Colletidae), with notes on their behaviour. Records of the Western Australian Museum, 15, 83-96.
Houston, T. F. (2000). Native bees on wildflowers in western Australia. A synopsis of bee visitation of wildflowers based on the bee collection of the

Western Australian Museum, Perth, Australia: Western Australian Insect Study Society.
Houston, T. F. and Thorp, R. W. (1984). Bionomics of the bee Stenotritus greavesi and ethological characteristics of the Stenotritidae (Hymenoptera). Records of the Western Australian Museum, 11, 375-85.
Inouye, D. W. (1980). The terminology of floral larcency. Ecology, 61, 1251-3.
Irwin, R. E., Brody, A. K. and Waser, N. M. (2001). The impact of floral larceny on individuals, populations, and communities. Oecologia, 129, 161-8.
Iuga, V. G. (1958). Insecta. Volumul IX. Fascicula 3. Hymenoptera Apoidea Fam. Apidae subfam. Anthophorinae, Bucarest, Hungary: Academia Republicii Populare Romîne.
Kawakita, A., Ascher, J. S., Sota, T., Kato, M. and Roubik, D. W. (2008). Phylogenetic analysis of the corbiculate bee tribes based on 12 nuclear protein-coding genes (Hymenoptera:Apoidea:Apidae). Apidologie, 39, 163-75.
Kimsey, L. S. (1984). The behavioural and structural aspects of grooming and related activities in euglossine bees (Hymenoptera:Apidae). Journal of Zoology, 204, 541-50.
Kotthoff, U., Wappler, T. and Engel, M. S. (2011). Miocene honey bees from the Randeck Maar of southwestern Germany (Hymenoptera, Apidae). ZooKeys, 11-37.
Labandeira, C. C. (1998). How old is the flower and the fly. Science, 280, 57-9.
Labandeira, C. C. (2000). The paleobiology of pollination and its precursors. Paleontological Society Papers, 6, 233-69.
Labandeira, C. C. (2002a). Paleobiology of middle Eocene plant-insect associations from the Pacific

Northwest: a preliminary report. Rocky Mountain Geology, 37, 31-59.
Labandeira, C. C. (2002b). The history of associations between plants and animals. In Plant-Animal Interactions, ed. M. Herrera and O. Pellmyr. Oxford, UK: Blackwell Publishing, pp. 26-74.
Larkin, L. L., Neff, J. L. and Simpson, B. B. (2008). The evolution of a pollen diet: Host choice and diet breadth of Andrena bees (Hymenoptera: Andrenidae). Apidologie, 39, 133-45.
Lucas, S. G., Minter, N. J. and Hunt, A. P. (2010). Re-evaluation of alleged bees' nests from the Upper Triassic of Arizona. Palaeogeography, Palaeoclimatology, Palaeoecology, 286, 194-201.
Lutz, H. (1993). Eckfeldapis electrapoides nov. gen. n. sp., eine "Honigbiene" aus dem MittelEozän des "Eckfelder Maares" bei Manderscheid/Eifel, Deutschland (Hymenoptera:Apidae, Apinae). Mainzer Naturwissenschaftliches Archiv, 31, 177-99.
Macior, L. W. (1986). Pollination ecology and endemism of Pedicularis pulchella Pennell (Scrophulariaceae). Plant Species Biology, 1, 173-80.
Macior, L. W. (1995). Pedicularis, a valuable information resource for plant conservation. In Environmental Factors and Pollination, ed. R. C. Sihag. Hisar: Rajendra Science Publications, pp. 8-19.
Mauss, V., Müller, A. and Prosi, R. (2006). Mating, nesting and flower association of the east Mediterranean pollen wasp Ceramius bureschi in Greece (Hymenoptera:Vespidae:Masarinae). Entomologia Generalis, 29, 1-26.
McGinley, R. J. and Rozen, J. G. (1987). Nesting biology, immature stages,
and phylogenetic placement of the palaearcti bee Pararhophites (Hymenoptera:Apoidea). American Museum Novitates, 2903, 1-21.
Meunier, F. (1920). Quelques insectes de l'Aquitanien de Rott, Sept-Monts (Prusse rhénane). Verhandelingen der Koninklijke Akademie van Wetenschappen, 22, 727-37.
Michener, C. D. (1944). Comparative external morphology, phylogeny, and classification of the bees (Hymenoptera). Bulletin of the American Museum of Natural History, 82, 1-326.
Michener, C. D. (1962). An interesting method of pollen collecting by bees from flowers with tubular anthers. Revista de Biologia Tropical, 10, 167-75.
Michener, C. D. (1965). A classification of the bees of the Australian and South Pacific regions. Bulletin of the American Museum of Natural History, 130, 1-789.
Michener, C. D. (1979). Biogeography of the bees. Annals of the Missouri Botanical Garden, 66, 277-342.
Michener, C. D. (1999). The corbiculae of bees. Apidologie, 30, 67-74.
Michener, C. D. (2007). The Bees of the World, 2nd edn. Baltimore, MD: The Johns Hopkins University Press.
Michener, C. D. and Grimaldi, D. (1988a). A Trigona from late Cretaceous amber of New Jersey (Hymenoptera:Apidae:Meli poninae). American Museum Novitates, 2917, 1-12.
Michener, C. D. and Grimaldi, D. (1988b). The oldest fossil bee: apoid history, evolutionary stasis, and antiquity of social behavior. Proceedings of the National Academy of Sciences USA, 85, 6424-26.

Michener, C. D. and Poinar, G., Jr. (1996). The known bee fauna of Dominican amber. Journal of the Kansas Entomological Society, 69, 353-61.
Michez, D. and Patiny, S. (2005). World revision of the oil-collecting bee genus Macropis Panzer 1809 (Hymenoptera, Apoidea, Melittidae) with a description of a new species from Laos. Annales de la Société entomologique de France (n. s.), 41, 15-28.

Michez, D., Patiny, S. and Danforth, B. N. (2009b). Phylogeny of the bee family Melittidae (Hymenoptera: Anthophila) based on combined molecular and morphological data. Systematic Entomology, 34, 574-97.
Michez, D., Nel, A., Menier, J.-J. and Rasmont, P. (2007). The oldest fossil of a melittid bee (Hymenoptera:Apiformes) from the Early Eocene of Oise (France). Zoological Journal of the Linnean Society, 150, 701-9.
Michez, D., Patiny, S., Rasmont, P., Timmermann, K. and Vereecken, N. J. (2008). Phylogeny and hostplant evolution in Melittidae s.l. (Hymenoptera:Apoidea). Apidologie, 39, 146-62.
Michez, D., De Meulemeester, T., Nel, A., Rasmont, P. and Patiny, S. (2009a). New fossil evidence of the early diversification of bees: Paleohabropoda oudardi from the French Paleocene (Hymenoptera, Apidae, Anthophorini). Zoologica Scripta, 38, 171-81.
Miller, D. F. and Morgan, A. V. (1982). A postglacial coleopterous assemblage from Lockport gulf, New York. Quaternary research, 17, 258-74.
Moure, J. S. and Camargo, J. M. F. (1978). A fossil stingless bee from Copal (Hymenoptera: Apidae). Journal of
the Kansas Entomological Society, 51, 560-66.
Müller, A. (1995). Morphological specializations in central European bees for the uptake of pollen from flowers with anthers hidden in narrow corolla tubes (Hymenoptera:Apoidea). Entomologia Generalis, 20, 43-57.
Müller, A. (1996a). Convergent evolution of morphological specializations in Central European bee and honey wasp species as an adaptation to the uptake of pollen from nototribic flowers (Hymenoptera, Apoidea and Masaridae). Biological Journal of the Linnean Society, 57, 235-52.
Müller, A. (1996b). Host-plant specialization in Western Palearctic anthidiine bees (Hymenoptera:A poidea:Megachilidae). Ecological Monographs, 66, 235-57.
Müller, A. (2006). Unusual host-plant of Hoplitis pici, a bee with hooked bristles on its mouthparts (Hymenoptera:Mega chilidae:Osmiini). European Journal of Entomology, 103, 497-500.
Müller, A. (2011). Palaearctic Osmiine Bees. ETH Zürich, http://blogs.ethz. ch/osmiini
Müller, A. and Kuhlmann, M. (2003). Narrow flower specialization in two European bee species of the genus Colletes (Hymenoptera:Apoidea:Collet idae). European Journal of Entomology, 100, 631-35.
Müller, A. and Kuhlmann, M. (2008). Pollen hosts of western palaearctic bees of the genus Colletes (Hymenoptera:Colletidae): the Asteraceae paradox. Biological Journal of the Linnean Society, 95, 719-33.
Müller, A., Krebs, A. and Amiet, F. (1997). Bienen, Mitteleuropäische Gattungen, Lebensweise, Beobachtung, Augsburg, Germany: Naturbuch Verlag.

Müller, A., Diener, S., Schnyder, S., Stutz, K., Sedivy, C. and Dorn, S. (2006). Quantitative pollen requirements of solitary bees: Implications for bee conservation and the evolution of bee-flower relationships. Biological Conservation, 130, 604-15.
Neff, J. L. (2004). Hooked hairs and not so narrow tubes: two new species of Colletes Latreille from Texas (Hymen optera:Apoidea:Colletidae). Journal of Hymenoptera Research, 13, 250-61.
Neff, J. L. and Simpson, B. B. (1988). Vibratile pollen-harvesting by Megachile mendica Cresson (Hymenoptera:Megachilidae). Journal of Kansas Entomological Society, 61, 242-24.
Nel, A. and Brasero, N. (2010). Oise Amber. In Biodiversity of Fossils in Amber from the Major World Deposits, ed. D. Penney. Manchester, UK: Siri Scientific Press, pp. 137-48.
Nel, A. and Petrulevicius, J. F. (2003). New Palaeogene bees from Europe and Asia. Alcheringa, 27, 227-93.
Nel, A. and Roy, R. (1996). Revision of the fossil "mantid" and "ephemerid" species described by Piton from the Palaeocene of Menat (France) (Mantodea:Chaeteessidae, Mantidae; Ensifera:Tettigonioidea). European Journal of Entomology, 93, 223-34.
Nel, A., Martínez-Delclòs, X., Papier, F. and Oudard, J. (1997). New Tertiary fossil Odonata from France. (Sieblosiidae, Lestidae, Coenagrioniidae, Megapodagrionidae, Libellulidae). Deutsche Entomologische Zeitschrift, 44, 231-58.
Nel, A., Martínez-Delclòs, X., Arillo, A. and Peñalver, E. (1999a). A review of the Eurasian fossil species of the bee Apis. Paleontology, 42, 243-285.
Nel, A., De Ploëg, G., Dejax, J., Dutheil, D., de Franceschi, D., Gheerbrant, E.,

Godinot, M., Hervet, S., Menier, J.-J., Augé, M., Bignot, G., Cavagnetto, C., Duffaud, S., Gaudant, J., Hua, S., Jossang, A., de Lapparent de Broin, F., Pozzi, J.-P., Paicheler, J.-C., Bouchet, F. and Rage, J.-C. (1999b). Un gisement sparnacien exceptionnel à plantes, arthropodes et vertébrés (Éocène basal, MP7): Le Quesnoy (Oise, France). Comptes Rendus de l'Académie des Sciences, Sciences de la terre et des planètes, 329, 65-72.
Ohl, M. and Engel, M. S. (2007). Die Fossilgeschichte der Bienen und ihrer nächsten Verwandten (Hymenoptera:Apoidea). Denisia, 20, 687-700.
Parker, F. D. and Tepedino, V. J. (1982). A nest and pollen collection records of Osmia sculleni Sandhouse, a bee with hooked hairs on mouthparts (Hymenoptera:Megachilidae). Journal of the Kansas Entomological Society, 51, 145-73.
Pasteels, J. J. and Pasteels, J. M. (1979). Etude au microscope électronique à balayage des scopas collectrices de pollen chez les Andrenidae (Hymenop tera:Apoidea:Andrenidae). Archives de Biologie, 90, 113-30.
Patiny, S., Michez, D. and Danforth, B. N. (2008). Phylogenetic relationships and host-plant evolution within the basal clade of Halictidae (Hymenoptera, Apoidea). Cladistics, 24, 255-69.
Patiny, S., Engel, M. S., Vanmarsenille, P. and Michez, D. (2007). A new record of Thaumastobombus andreniformis Engel in Eocene amber (Hymenoptera:Apidae). Annales de la Société entomologique de France (n. s.), 43, 505-8.
Peñalver, E., Engel, M. S. and Grimaldi, D. (2006). Fig wasps in Dominican amber
(Hymenoptera: Agaonidae). American Museum Novitates, 3541, 1-16.
Piton, L. (1940). Paléontologie du gisement éocène de Menat (Puy-de-Dôme) (Flore et faune). Mémoire de la Société d'Histoire Naturelle d'Auvergne, $\mathbf{1}$, 1-303.
Poinar, G. J. (1998). Paleoeuglossa melissiflora gen. n., sp. n. (Euglossinae:Apidae), fossil orchid bees in Dominican amber. Journal of the Kansas Entomological Society, 71, 29-34.
Poinar, G. O. J. (2004). Evidence of parasitism by Strepsiptera in Dominican amber. Biocontrol, 49, 239-44.
Poinar, G. J. (2010). Palaeoecological perspectives in Dominican amber. Annales de la societe entomologique de France (n.s.), 46, 23-52.
Poinar, G. J. and Danforth, B. N. (2006). A fossil bee from early Cretaceous Burmese amber. Science, 314, 614.
Pouvreau, A. (2004). Les Insectes Pollinisateurs, Paris, France: Delachaux et Niestlé.
Praz, C. J., Müller, A. and Dorn, S. (2008). Specialized bees fail to develop on non-host pollen: do plants chemically protect their pollen? Ecology, 89, 795-804.
Proctor, M., Yeo, P. and Lack, A. (1996). The Natural History of Pollination, London, UK: Harper Collins Publishers.
Proença, C. E. B. (1992). Buzz pollination: older and more widespread than we think? Journal of Tropical Ecology, 8, 115-20.
Prokop, J. and Nel, A. (2003). New fossil Aculeata from the Oligocene of the Ceske Stredohori Mts. and the Lower Miocene of the Most Basin in nothern Czech Republic (Hymenoptera:

Apidae, Vespidae). Acta Musei
Nationalis Pragae, Series B, Natural History, 59, 163-71.
Raine, N. E., Ings, T. C., Dornhaus, A., Saleh, N. and Chittka, L. (2006).
Adaptation, genetic drift, pleiotropy, and history in the evolution of bee foraging behavior. Advances in the Study of Behavior, 36, 305-54.
Ramirez, S. R. (2009). Orchid bees. Current Biology, 19, R1061-3.
Ramirez, S. R., Roubik, D. W., Skov, C. and Pierce, N. E. (2010). Phylogeny, diversification patterns and historical biogeography of euglossine orchid bees (Hymenoptera:Apidae). Biological Journal of the Linnean Society, 100, 552-72.
Ramirez, S. R., Gravendeel, B., Singer, R. B., Marshall, C. R. and Pierce, N. E. (2007). Dating the origin of the Orchidaceae from a fossil orchid with its pollinator. Nature, 448, 1042-5.
Rasmont, P. (1988). Monographie écologique et biogéographique des bourdons de France et de Belgique (Hymenoptera, Apidae, Bombinae), Gembloux, Belgium: Faculté Universitaire des Sciences Agronomiques de Gembloux.
Rasnitsyn, A. P. and Michener, C. D. (1991). Miocene fossil bumble bee from the Soviet far east with comments on the chronology and distribution of fossil bees (Hymenoptera:Apidae). Annals of Entomological Society of America, 84, 583-9.
Raven, P. H. and Axelrod, I. (1974). Angiosperm biogeography and past continental movements. Annals of the Missouri Botanical Garden, 61, 539-673.
Renner, S. S. and Schaefer, H. (2010). The evolution and loss of oil-offering flowers: new insights from dated
phylogenies for angiosperms and bees. Philosophical Transactions of the Royal Society B, Biological Sciences, 365, 423-35.
Retallack, G. J. (1984). Trace fossils of burrowing beetles and bees in an Oligocene paleosol, Badlands National Park, South Dakota. Journal of Paleontology, 58, 571-92.
Robertson, C. (1925). Heterotrophic bees. Ecology, 6, 412-36.
Roig-Alsina, A. and Michener, C. D. (1993). Studies of the phylogeny and classification of long-tongued bees (Hymenoptera: Apoidea). The University of Kansas Science Bulletin, 55, 123-73.
Ronquist, F. (1999). Phylogeny of the Hymenoptera (Insecta): the state of the art. Zoologica Scripta, 28, 3-11.
Ross, A., Mellish, C., York, P. and Crighton, B. (2010). Burmese amber. In Biodiversity of Fossils in Amber from the Major World Deposits, ed. D. Penney. Manchester, UK: Siri Scientific Press, pp. 208-35.
Roulston, T. H. and Cane, J. H. (2000). Pollen nutritional content and digestibility for animals. Plant Systematics and Evolution, 222, 187-209.
Roulston, T. H., Cane, J. H. and Buchmann, S. L. (2000). What governs protein content of pollen: pollinator preferences, pollen-pistil interactions, or phylogeny. Ecological Monographs, 70, 617-43.
Rozen, J. G. (1996). A new species of the bee Heterosarus from Dominican amber (Hymenoptera:Andrenidae; Panurginae). Journal of the Kansas Entomological Society, 69, 346-52.
Rozen, J. G., Ozbek, H., Ascher, J. S., Sedivy, C., Praz, C., Monfared, A. and Muller, A. (2010). Nests, petal usage,
floral preferences, and immatures of Osmia (Ozbekosmia) avosetta
(Megachilidae:Megachilinae:Osmiini), including biological comparisons with other Osmiine bees. American Museum Novitates, 1-22.
Rust, J., Singh, H., Rana, R. S., McCann, T., Singh, L., Anderson, K., Sarkar, N., Nascimbene, P. C., Stebner, F., Thomas, J. C., Kraemer, M. S., Williams, C. J., Engel, M. S., Sahni, A. and Grimaldi, D. (2010). Biogeographic and evolutionary implications of a diverse paleobiota in amber from the early Eocene of India. Proceedings of the National Academy of Sciences USA, 107, 18360-65.
Sakagami, S. F. (1965). Über dem Bau der männlichen Hinterschiene von Eulaema nigrita Lepeletier (Hymenoptera, Apidae). Zoologischer Anzeiger, 175, 347-54.
Sarzetti, L. C., Labandeira, C. C. and Genise, J. F. (2008). A leafcutter bee trace fossil from the middle Eocene of Patagonia, Argentina, and a review of Megachilid (Hymenoptera) ichnology. Palaeontology, 51, 933-41.
Schlindwein, C., Wittmann, D., Martins, C. F., Hamm, A., Siqueira, J. A., Schiffer, D. and Machado, I. C. (2005). Pollination of Campanula rapunculus L . (Campanulaceae): how much pollen flows into pollination and intro reproduction of oligolectic pollinators? Plant Systematics and Evolution, 250, 147-56.
Sedivy, C., Praz, C. J., Muller, A., Widmer, A. and Dorn, S. (2008). Patterns of host-plant choice in bees of the genus Chelostoma: the constraint hypothesis of host-range evolution in bees. Evolution, 62, 2487-507.
Shinn, A. F. (1967). A revision of the bee genus Calliopsis and the biology and ecology of C. andreniformis
(Hymenoptera:Andrenidae). University of Kansas Science Bulletin, 46, 753-936.
Singer, R. B. and Sazima, M. (2001). Flower morphology and pollination mechanism in three sympatric Goodyerinae orchids from southeastern Brazil. Annals of Botany, 88, 989-97.
Solórzano-Kraemer, M. M. S. (2007). Systematic, palaeoecology, and palaeobiogeography of the insect fauna from Mexican amber. Palaeontographica Abteilung a-Palaozoologie-Stratigraphie, 282, 1-133.
Soltis, P. S. and Soltis, D. E. (2004). The origin and diversification of Angiosperms. American Journal of Botany, 91, 1614-26.
Steiner, K. E. and Whitehead, V. B. (1990). Pollinator adaption to oil-secreting flowers - Rediviva and Diascia. Evolution, 44, 1701-07.
Strickler, K. (1979). Specialization and foraging efficiency of solitary bees. Ecology, 60, 998-1009.
Taylor, D. W. and Hickey, L. J. (1992). Phylogenetic evidence for the herbaceous origin of angiosperms. Plant Systematics and Evolution, 180, 137-56.
Thorp, R. W. (1979). Structural behavioral, and physiological adaptations of bees (Apoidea) for collecting pollen. Annals of the Missouri Botanical Garden, 66, 788-812.
Thorp, R. W. (2000). The collection of pollen by bees. Plant Systematics and Evolution, 222, 211-23.
Timon-David, J. (1944). Insectes fossiles de l'Oligocène inférieur Camoins (Bassin de Marseille) II. Hyménoptères. Bulletin de la Société Entomologique de France, 49, 40-5.
Torchio, P. F. (1984). The nesting biology of Hylaeus bisinuatus Forster and development of its immature forms
(Hymenoptera: Colletidae). Journal of the Kansas Entomological Society, 57, 276-97.
Tosi, A. (1896). Di un nuevo genere di Apiaria fossile nell' ambra di Sicilia (Meliponorytes succini - M. sicula). Rivista Italiana di Paleontologia, 2, 352-6.

Vamosi, J. C. and Vamosi, S. M. (2010). Key innovations whitin a geographical context in flowering plants: towards resolving Darwin's abominable mystery. Ecology Letters, 13, 1270-9.
Vereecken, N. J. and McNeil, J. N. (2010). Cheaters and liars: chemical mimicry at its finest. Canadian Journal of Zoology, 88, 725-52.
Vogel, S. (1966). Parfümsammelnde Bienen als Bestäuber von Orchidaceen und Gloxinia. Österreichischen Botanischen Zeitschrift, 113, 302-61.
Vogel, S. (1976). Lysimachia: Ölblumen der Holarktis. Naturwissenschaften, 63, 44-5.
Vogel, S. (1981). Abdominal oil-mapping: a new type of foraging in bees. Naturwissenschaften, 68, 627-8.
Vogel, S. (1986). Olblumen und ölsammelnde Bienen II. Lysimachia und Macropis. Tropische und Subtropische Pfanzenwelt, 54, 147-312.
Vogel, S. (1993). Betrug bei Pflanzen: Die Täuschblumen. Abhandlungen der Akademie der Wissenschaften und der Literatur Mainz, 1, 1-48.
Vogel, S. and Michener, D. C. (1985). Long bee legs and oilproducting floral spurs, and a new Rediviva (Hymenoptera, Melittidae;Scrophulariaceae). Journal of the Kansas Entomological Society, 58, 359-64.
Wappler, T. and Engel, M. S. (2003). The middle Eocene bee faunas of Eckfeld and Messel, Germany
(Hymenoptera:Apoidea). Journal of Paleontology, 77, 908-21.
Ware, J. L., Grimaldi, D. A. and Engel, M. S. (2010). The effects of fossil placement and calibration on divergence times and rates: an example from the termites (Insecta: Isoptera). Arthropod Structure \& Development, 39, 204-19.
Wcislo, W. T. and Cane, J. H. (1996). Floral resource utilization by solitary bees (Hymenoptera:Apoidea) and exploitation of their stored foods by natural enemies. Annual Review of Entomology, 41, 257-86.
Wedmann, S., Wappler, T. and Engel, M. S. (2009). Direct and indirect fossil records of megachilid bees from the Paleogene of Central Europe (Hymenoptera:Megachilidae). Naturwissenschaften, 96, 703-12.
Weitschatt, W. and Wichard, W. (2010). Baltic amber. In Biodiversity of Fossils in Amber from the Major World Deposits, ed. D. Penney. Manchester, UK: Siri Scientific Press, pp. 80-115.
Westerkamp, C. (1996). Pollen in beeflower relations: some considerations on melittophily. Botanica Acta, 109, 325-32.
Westerkamp, C. (1997). Flowers and bees are competitors-not partners. Towards a new understanding of complexity in specialised bee flowers. Acta Horticulturae, 437, 71-4.
Westerkamp, C. and Claßen-Bockhoff, R. (2007). Bilabiate flowers: the ultimate response to bees? Annals of Botany, 100, 361-74.
Westrich, P. (1989). Die Wildbienen BadenWürttembergs: Allgemeiner Teil, pp. 1-43; Spezieller Teil: Die Gattungen Und Arten, pp. 437-972, Stuttgart, Germany: Eugene Ulmer.
Whitten, W. M., Young, A. M. and Williams, N. H. (1989). Function of
glandular secretions in fragrance collection by male euglossine bees (Apidae:Euglossini). Journal of Chemical Ecology, 15, 1285-95.
Wille, A. (1959). A new fossil stingless bee (Meliponini) from the amber of Chiapas, Mexico. Journal of Paleontology, 33, 849-52.
Wolfe, A. P., Tappert, R., Muehlenbachs, K., Boudreau, M., McKellar, R. C., Basinger, J. F. and Garrett, A. (2009). A new proposal concerning the botanical origin of Baltic amber. Proceedings of the Royal Society B, Biological Sciences, 276, 3403-12.
Zeuner, F. E. and Manning, F. J. (1976).
A monograph on fossil bees
(Hymenoptera: Apoidea). Bulletin of the British Museum (Natural History), Geology, 27, 149-268.
Zhang, J.-F. (1989). Fossil Insects from Shanwang, Shandong, China. Jinan, China: Shandong Science and Technology Publishing House.
Zhang, J.-F. (1990). New fossil species of Apoidea (Insecta: Hymenoptera). Acta Zootaxonomica Sinica, 15, 83-91. [In Chinese, with English summary].
Zhang, J.-F., Sun, B. and Zhang, X.-Y. (1994). Miocene Insects and Spiders from Shanwang, Shandong. Beijing, China: Science Press. [In Chinese, with English summary].

[^0]: Evolution of Plant-Pollinator Relationships, ed S. Patiny. Published by Cambridge University Press. © The Systematics Association 2012.

