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Abstract
Whilst the Arctic and boreal bumblebee fauna is increasingly studied worldwide, information is missing about the genetic 
connections between circum-boreal populations of some widespread species, especially those living in remote regions like 
North-East Siberia and Alaska. Here, we study one of the most common boreal bumblebee species, Bombus (Pyrobombus) 
jonellus (Kirby, 1802), as a model to investigate current circum-boreal genetic connections and relations with relictual popula-
tions in its post-glacial refugia in Southern Europe. Our haplotype network analysis based on a fragment of the cytochrome 
oxidase 1 gene reveals two main conspecific lineages, one in Europe including the Southern relictual populations from the 
Pyrenees and the second comprising Eastern Palearctic and Nearctic populations. However, West-Siberian populations of 
Bombus jonellus share haplotypes with the two distinct lineages. These results could indicate a postglacial, multidirectional 
and circum-boreal recolonization both in Europe and East-Palearctic from refugia in Siberia, in addition to other recoloniza-
tion ways from Southern European refugia and Beringia. These findings highlight that a priori distant and isolated conspecific 
populations of B. jonellus could presently remain connected or have only presented a recent break in gene flow.
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Introduction

Bumblebees (Hymenoptera: Apidae) constitute a genus of 
mostly cold-adapted pollinators living in some of the high-
est latitude and altitude ecosystems of the world. High spe-
cies diversity is reached in the Arctic, boreal and mountain 
regions (Williams 1998; Williams et al. 2014). They are rel-
evant models for biogeographic reconstructions as (i) their 
presence in each area relies on the concomitant distribu-
tion of flowering plants, (ii) they are not able to disperse 

across large water barriers and (iii) have undergone serious 
redistribution patterns following the last ice ages (Reinig 
1937; Bolotov et al. 2013; Potapov et al. 2018; Martinet 
et al. 2018).

The origin of the genus Bombus is estimated at the late 
Eocene to mid-Oligocene (25–40 Ma) in Asian mountains 
(Hines 2008; Dehon et al. 2019), nowadays still hosting 
their highest species richness (Williams 1991; Williams 
et al. 2010; Streinzer et al. 2019; Ghisbain et al. 2020). 
Throughout the later diversification of the genus follow-
ing the oscillations of climate, movements between West- 
and East-Palearctic regions were frequently involving long 
distances (Hines 2008). Connections between the Old and 
the New World took place across the Bering Strait (Wil-
liams 1985) along with a large diversification in Nearctic 
regions between 20 and 10 Ma. At this period, the taiga 
biome, extending further south than present, was a key 
facilitator for the dispersion of bumblebees. The separa-
tion between Palearctic and Nearctic regions by the Bering 
Strait (ca. 3.5 Ma ago) later resulted in repeated processes 
of vicariant speciation in many organisms (Sanmartin et al. 
2001), including bumblebees (Williams et al. 2019). These 
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two territories were later reconnected (ca. 1–1.5 Ma ago) 
allowing new migration events between the Palearctic and 
Nearctic regions. Currently, most Arctic bumblebee taxa are 
still distributed on both sides of the Bering Strait (Ito and 
Kunarishi 2000). As a result, several bumblebee species now 
present a circum-Arctic distribution (Williams et al. 2014, 
2019) such as Bombus (Alpinobombus) polaris (Curtis, 
1835), Bombus (Pyrobombus) lapponicus (Fabricius, 1793) 
and Bombus (Pyrobombus) jonellus (Kirby, 1802) (Marti-
net et al. 2019) with potential speciation processes involved 
(Williams et al. 2019).

Amongst bumblebees, Pyrobombus Dalla Torre, 1880 
constitutes a diversified subgenus including around 50 
species worldwide (Williams 1998; Hines 2008). Pyrob-
ombus are most diversified in the Nearctic, but also 
comprise numerous Palearctic species. Several of them 
present a widespread distribution and occur both in the 
Nearctic and Palearctic regions. The heath bumblebee, 
Bombus (Pyrobombus) jonellus (Fig. 1) is just such a 
case. It is a circum-boreal bumblebee species, distrib-
uted from Iceland and the British Islands, through North-
ern Europe with southern populations (e.g. in Pyrenees), 
West- and East-Palearctic Russia, to Alaska and Western 
Canada (Løken 1973; Pekkarinen 1981; Proshchalykin 
and Kupianskaya 2005; Williams et al. 2014; Levchenko 
and Tomkovich 2014; Rasmont et al. 2015; Kratochwil 
2016) (Fig. 2). Compared to other insect taxa (Sikes et al. 
2016; Combe et al. 2021), the apparent conspecificity of 
both the Nearctic and Palearctic lineages of B. jonellus 
(Williams et al. 2014) is quite remarkable given that the 
distribution of this species spans across North America 
(limited to the far Northwest Nearctic, Koch et al. 2015), 
Europe (where it includes several isolated relictual popu-
lations) and Russia. Overall, the global distribution of B. 
jonellus gives it an almost unrivalled large distribution 

amongst bumblebees. In most parts of its distribution, B. 
jonellus is associated with heathlands, mountain meadows 
and tundra partly characterized by a large abundance of 
plants of the family Ericaceae (Alford 1975; Falk and 
Lewington 2017; Parkkinen et al. 2018) (Fig. 3). Whilst 
the species seems especially associated with open habi-
tats, it also occurs in forests in Eastern Europe (Poland) 
(Dylewska 1996) and boreal taiga forest in the central 
part of European Russia (Panfilov 1982). In the taiga 
and tundra regions, B. jonellus is one of the main pol-
linators of berries (e.g. Vaccinium spp.), an important 
food resource for the subsistence human populations. 
In Europe, the distribution of B. jonellus is well known 
(Rasmont et al. 2015), although we do not have sufficient 
data to establish its worldwide conservation status (Data 
deficient in Hatfield et al. 2016; but see Nieto et al. 2014 
for Europe). However, this species seems to be sensitive 
to environmental stress such as climate change (Martinet 
et al. 2021a,b) and habitat fragmentation especially for 
relictual and isolated populations. Particularly, in central 
and eastern regions of Russia, there is an unfortunately 
large lack of data for this species (Rasmont and Iserbyt 
2014; Potapov et al. 2018; Potapov and Kolosova 2020), 
understanding us of knowing the genetic connections with 
the other parts of its distribution. In this study, we provide 
new genetic data including Siberian and European iso-
lated populations for a better understanding of population 
genetic connections in B. jonellus.  

In a context of climate change, populations of B. jonellus 
are expected to suffer from a significant reduction in suitable 
climatic areas in Europe (Rasmont et al. 2015) and North 
America (Sirois-Delisle and Kerr 2018). From a conserva-
tion point of view, it is critical to understand the genetic 
structures between these circum-boreal populations to get a 
more comprehensive overview of the connections of these 
boreo-alpine pollinators with a disjunct distribution, espe-
cially in a context of global changes. Genetic tools, such as 
barcoding at large geographical scale provide crucial data 
to explore genetic connections between populations across 
species' ranges (e.g. Martinet et al. 2019; Williams et al. 
2020; Lhomme et al. 2021). In this paper, we explore the 
genetic connections of B. jonellus populations across the dis-
tribution range of the species in the Holarctic region. As for 
many other bumblebee taxa distributed across the Holarctic 
(e.g. Martinet et al. 2018; Potapov et al. 2019; Williams 
et al. 2019), we expect a clear genetic structure between the 
Nearctic and Palearctic populations of B. jonellus. Because 
polytypic bumblebee taxa can show signs of population 
structuring in the COI barcode fragment (Williams et al. 
2020; Brasero et al. 2021; but see Lecocq et al. 2015), some 
degree of genetic differentiation in the phenotypically diver-
gent subspecies B. jonellus hebridensis is expected (Potapov 
et al. 2018). Finally, the isolated Pyrenean population of 

Fig. 1  Photo of Bombus jonellus. A male of the heath bumblebee 
(Bombus jonellus) visiting a fireweed (Epilobium latifolium) in Too-
lik field Station, N-Alaska. Photo by P. Rasmont
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B. jonellus is also expected to appear as a distinct genetic 
cluster, as observed in other bumblebee whose distributions 
encompass isolated high-altitude habitats in the southern 
part of their range (Martinet et al. 2018; Brasero et al. 2021).

Materials and methods

Data sampling

We collected specimens of B. jonellus from W-Pyrenees 
(n = 6), Belgium (n = 3), Outer Hebrides (n = 10), N-Alaska 
(n = 5), W-Siberia (Yamalo-Nenets region, Khanymey) 
(n = 5), E-Siberia (Chokurdakh) (n = 9) and Mongolia 
(n = 3), completing the genetic data with 19 available on 

Fig. 2  Distribution map and collecting sites. Global distribution 
(green area) and sampling localities (coloured points) of Bombus 
jonellus adapted from Løken (1973), Panfilov (1957), Davydova 
(2003), Proshchalykin (2004), Proshchalykin et al. (2004), Proshcha-
lykin and Kupianskaya (2005), Kupianskaya et  al. (2011), Williams 
et  al. (2014), Rasmont et  al. (2015), Paukkunen and Kozlov (2015, 

2020), Madsen et al. (2016), Byvaltsev et al. (2016) and Potapov and 
Kolosova (2020). Colored points displayed on this map correspond to 
the colors used in haplotype network analysis (Fig. 4). Distributional 
ranges are approximated based on literature records and thus are not 
meant to be accurate at a fine scale
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NCBI GenBank and the Barcode of Life Database (Online 
Resource 1). Overall, 60 samples could be gathered to con-
stitute the dataset from 14 regions across three continents 
(Fig. 1; Table 1). Newly sequenced specimens are deposited 
in the collection of the University of Mons (Mons, Belgium). 
Bumblebees were identified in the field and confirmed in 
the lab following Løken (1973) and Williams et al. (2014). 
Several subspecies with little differentiated colour pattern, 
are currently recognized (Rasmont et al. 2021): (i) hebri-
densis from Hebrides; (ii) martes from Alps, Belgium, Ills 
of Central Europe; (iii) monapiae from Island of Man; (iv) 

subborealis from Fennoscandia, Iceland and Russia; (v) vog-
tianus from Shetland; (vi) yarrowianus from Pyrenees and 
Cantabrian mountains; (vii) alboanalis in North America, 
(viii)  jonellus from British Islands, Germany, Belgium, 
Netherlands, North of France, Massif Central, Alps, Balkan 
peninsula, Tatra mountains, Northern Russia.

Sequencing protocol

We obtained new sequences of the barcoding fragment of 
the cytochrome c oxidase subunit I (COI) from 41 specimens 
of B. jonellus (Online Resource 1). Extraction, purification 
and polymerase chain reactions (PCR) were performed from 
legs of fresh killed specimens using a standard DNA extrac-
tion kit (NucleoSpin Tissue, Macherey–Nagel). Based on 
primers which amplify the classic COI barcode fragment 
(LepF1/LepR1, Hebert et al. 2003), we designed specific 
primers for B. jonellus (Forward GGT CTG GAA TAA TTG 
GTT CATCA/Reverse GGA TTG GAT CAC CTC CTC CT). 
For each PCR samples, the mix contained approximately 
200 ng of total cell DNA (1 µl), 10 pmol of each primer 
(2 × 1 µl), 2.5 µl of dNTP (2 mM), 7.5 μl of PCR buffer (5 µl 
GoTaq Flexi Buffer with 2.5 µl  MgCl2 25 mM), 0.125 µl Taq 
DNA polymerase (5 units/µl, Sigma-Aldrich) and  H2O was 
added for a final volume of 25 μl. For temperature cycling, 
PCR conditions were as follows: 94 °C (1 min), 6 cycles of 
94 °C (1 min), 45 °C (90 s), 72 °C (75 s), 36 cycles of 94 °C 
(1 min), 51 °C (90 s), 72 °C (75 s) and a final extension 
at 72 °C (5 min). COI amplicons were Sanger sequenced 
by Eurofins Genomics (Ebersberg, Germany) and manually 
edited in Bioedit v.7.2.5 (Hall 1999). Newly obtained genetic 

Fig. 3  Foraging habitats. Typical foraging habitats of Bombus jonel-
lus in the north-Alaskan tundra with Epilobium angustifolium and 
Epilobium latifolium (Toolik field station, N-Alaska). Photo by P. 
Rasmont

Table 1  COI nucleotide polymorphisms in Bombus jonellus 

Numbers in the top row refer to nucleotide positions within a condensed alignment of the sequences with minimal gaps (455 base pairs), letters 
are FASTA codes for nucleotides but with additional polymorphisms shown explicitly. Traits indicate a nucleotide matching the first sequence. 
Numbers next to species’ names are the numbers of sequences examined

Collecting sites 96 112 147 149 163 204 222 232 282 300 331 333 335 366 382 408 432 435 438

Belgium (3) C G T T/C T A C T C T/C T A T C G C A C T
Germany (4) – – – C – – – – – T – – – – – T/C A/G – A/T
Pyrenees (6) – A – C – – – – – T – – – – – – A/G – –
Ireland (1) – – – C – – – – – T – – – – – – G – –
Hebrides (10) – – – C – – – – – T – – – – – – – – –
Iceland (6) – – – C – – – – – T – – – – – – G – –
Norway (1) – – – C – – T – – T A T A – – – G – –
Khanymey (5) C/T G/A T/A C – – – – C/T T – – – C/T A/G – – – –
Mongolia (3) T – A C – – – C T T – – – T – – – – –
Kolyma (1) T – A C – T – C T T – – – T – – – – –
Chokurdakh (9) T – A C – – – C T T – – – T – – – – –
N-W Canada (3) T G/A A C – – – C/T T T – – – T – – – C/T –
Alaska (7) T – A C T/C – – C T T – – – T – – – – –
N-E Canada (1) T – A C – – – C T T – – – T – – – – –
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sequences were deposited on GenBank (Accession numbers 
in Online Resource 1).

Phylogeographic analyses

The alignment of the COI sequences was performed using 
the ClustalW algorithm implemented in Bioedit v.7.2.5 (Hall 
1999). Each COI sequence was trimmed to a 455-bp frag-
ment with no missing data following Potapov et al. (2018). 
We investigated the genetic differentiation within B. jonellus 
through haplotype network analyses and phylogeographic 
inference. We used the median-joining method to produce 
haplotype networks with Network 4.6.1.3 software (www. 
fluxus- engin eering. com, Bandelt et al. 1999), weighting 
transversions twice as high as transitions to reconstruct the 
network (Lecocq et al. 2015; Brasero et al. 2020). Genetic 
divergences and nucleotide substitutions were estimated 
in MEGA6 (Tamura et al. 2013) using similar settings as 
Potapov et al. (2018). We calculated the p-distance as the 
proportion of nucleotide sites at which two sequences being 
compared are different by dividing the number of nucleo-
tide differences by the total number of nucleotides compared 
(Nei and Kumar 2000).

Results

We found 14 different COI haplotypes (Fig. 4) amongst 60 
COI-samples of Bombus jonellus (accession numbers listed 
in Online Resource 1). These COI data are information rich, 
with 19/455 nucleotide sites phylogenetically informative 
(Table 1). The phylogeographic haplotype network analysis 
unveiled 19 segregating sites and nine parsimony-inform-
ative sites (Fig. 4). Two main lineages appear with four 
unique Single Nucleotide Polymorphisms (SNPs) separat-
ing the two groups (0.8% COI divergence): (i) a first one 
comprising North-West American (three haplotypes), North-
West Siberian (one unique haplotype) and North-East Sibe-
rian (two haplotypes) samples; (ii) a second one including 
European (eight haplotypes including one unique haplotype 
in Norway with four unique SNPs separating this group) and 
North-West Siberian samples (two haplotypes). In Europe, 
populations from the Pyrenees (n = 2), Norway (n = 1), Bel-
gium (n = 3) and Germany (n = 2) include unique haplotypes 
(i.e. haplotypes shared by no other population). Specimens 
from the Hebrides share a common COI-haplotype with 
specimens from Belgium and Khanymey (W-Siberia) whilst 
specimens from Iceland are in the same haplogroup as speci-
mens from Germany and Ireland. Only a few SNPs separat-
ing individuals within these groups. The mean uncorrected 
COI p-distance amongst the lineages is 1.2 ± 0.3%. Glob-
ally, the haplotype network of B. jonellus reveals two geo-
graphically distinct clades, the European lineage (including 

Fig. 4  Haplotype network analysis. Median-joining networks based 
on a fragment of the Cytochrome oxidase I (COI). Each sequenced 
haplotype is represented by a circle, the size of which is proportional 
to its overall frequency in the dataset (Online Resource 1). Black 
lines and numbers on the branches are used to indicate the number 

of mutational changes between two different haplotypes. n = number 
of sequences per haplotypes and numbers in circles correspond to the 
number of sequences per sampling sites and per haplotypes. Haplo-
type colours correspond to the sampling localities displayed on the 
map (Fig. 2) and annotated on the legend
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its relictual populations) and the North-West American + 
North-East Siberian one.

Discussion

The evolutionary processes between allopatric populations 
around the Arctic Circle and their connections with pop-
ulations from glacial refugia have been a central topic in 
the field of polar biogeography and Arctic ecology (Reinig 
1937; Irwin and Geoghegan 2001; Irwin et al. 2005; Päck-
ert et al. 2005; Monahan et al. 2012; Alcaide et al. 2014; 
Martinet et al. 2019). Circum-boreal distribution can involve 
chains of intergrading populations, eventually leading to 
reproductively isolated taxa (Stresemann and Timofeeff-
Ressovsky 1947; Irwin and Geoghegan 2001; Brunke et al. 
2020; Combe et al. 2021). However, some species with a 
priori distant circum-Arctic populations could remain con-
nected and still considered as conspecific (Martinet et al. 
2019; Lhomme et al. 2021).

We explored the genetic relationships amongst circum-
boreal populations of B. jonellus across three continents 
within the Holarctic region. Despite the very large distri-
bution of the species and the presence of both isolated and 
phenotypically distant populations, B. jonellus appears 
especially poorly variable on the analysed gene fragment 
(COI) across a large part of its distribution range. In particu-
lar, the well differentiated population of the Hebrides (ssp. 
hebridensis) shows an identical haplotype to that of other 
European populations that are not phenotypically divergent 
from the typical B. jonellus, contrary to the hypothesis of 
Potapov et al. (2018). Strikingly, the Hebrides haplotype is 
even identical to that of some specimens from W-Siberia, 
and only one nucleotide differentiated from samples from 
the distant and isolated French Pyrenees.

The distribution of B. jonellus is especially wide for a 
non-managed bumblebee species: from Iceland and the 
Sierra Cantabrica in the west to the Anadyr on the Pacific 
and even beyond the Arctic Circle in the north. However, 
it is likely that the Icelandic population was introduced 
from mainland Europe by humans after the last glaciation 
(Potapov et al. 2018). In Russia, the distribution of B. jonel-
lus is continuous north of the 55th parallel and rather patchy 
south of this latitude (Rasmont et al. 2015). In the south of 
Europe, the range of B. jonellus is restricted to higher-alti-
tude biotopes, reaching one of the highest mountain ranges 
of the Iberian Peninsula where it is very rare (Genoud and 
Rasmont 2009; Rasmont et al. 2015). Whilst B. jonellus is 
common in the North of its distribution, it is considered as 
rare and localized in its southern relictual refugia.

The present haplotype network analysis suggests the pres-
ence of several populations of B. jonellus connected along 
a widespread boreal distribution (Fig. 4). Based on a more 

restricted dataset, Potapov et al. (2018) highlighted two main 
lineages in the global phylogeography of B. jonellus, corre-
sponding to two different postglacial recolonization patterns, 
the latter having resulted in the presence of one European 
lineage (including Southern relictual populations) and a 
second one in the East-Palearctic and North-West Nearctic 
regions. However, as hypothesized (Potapov et al. 2018), 
the intermediate COI sequences from Siberia analysed here 
narrow the expected gap between European and Nearctic 
haplogroups (Fig. 4). These may reflect two glacial refugia 
with intermediate haplogroups from W-Siberia (Yamalo-
Nenets region) which display haplotypes of both lineages. 
From the three newly obtained haplotypes from West Sibe-
ria (Khanymey), two are from the Palearctic group (includ-
ing one unique haplotype) and one is associated with the 
Nearctic samples. Based on hypothetical reconstructions of 
the paleogeography of Northern Eurasia in the Quaternary 
period, NW Siberia could have served as a glacial refugium 
for bumblebees during the Late Pleistocene (Panfilov 1957; 
Potapov et al. 2019). From this region, postglacial recolo-
nization could have taken place towards both the east and 
west Palearctic regions. This could explain why we found 
haplotypes similar to those of Yamalo-Nenets region (NW 
Siberia) both in the Palearctic and the Nearctic + East-Sibe-
ria groups.

Alternative hypotheses exist about Central Siberia as a 
potential glacial refugium for animals and plants during the 
last Ice Ages. For instance, the presence of a large swamp 
area in the North-Center of Siberia (de Lattin 1967) may 
have resulted in an unsuitable zone for terrestrial organisms 
during the Würm glaciation. At that time, a huge freshwater 
lake is thought to have formed in the south of the glacier due 
to water accumulation (Berg 1959). Following this hypoth-
esis, post-glacial recolonizations could have taken place 
in this region from European and North-Eastern Siberian 
refugees (Habel et al. 2010). Although we are not aware of 
studies that have focussed on this hypothesis as an impor-
tant parameter in biogeographic reconstructions of boreal 
species, the authors have observed a relatively low diver-
sity of bumblebee species in Yamalo-Nenets region, which 
could partly support this hypothesis. Further work on several 
model species would be useful to disentangle the impact 
of this possible glacial ecological barrier on the patterns 
of recolonization of mobile organisms such as bumblebees.

The haplogroup from Europe seems to be more struc-
tured than previously suggested by Potapov et al. (2018). 
Whilst isolated populations with a non-differentiated col-
our pattern display of a unique haplotype (e.g. from Pyr-
enees ssp. yarrowianus, Kolyma, Norway ssp. subborea-
lis), differentiated and isolated taxa such as the red-tailed 
subspecies hebridensis share their COI-haplotype with 
other European taxa. This finding challenges the hypoth-
esis of a single, compact haplogroup in Europe (Potapov 
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et al. 2018). The presence of two unique haplotypes in 
the Pyrenees (ssp. yarrowianus) could reflect the role of 
these mountains as a relictual glacial refugium in Southern 
Europe in the Late Pleistocene or Early Holocene. Whilst 
the unique Norwegian haplotype might be the inheritance 
of a glacial refugia (Habel et al. 2010) in North of Europe, 
the diversity (three haplotypes) in Belgium (ssp. martes 
and ssp. jonellus) could reflect an interbreeding zone 
between different subspecies (Rasmont and Iserbyt 2014).

Unveiling the phylogeographic patterns of widespread 
yet relatively specialized pollinators such as B. jonellus is 
crucial to identify where genetically differentiated taxa occur 
within the species’ range. Locating such original popula-
tions is of utmost interest in conservation biology, espe-
cially for species that are endangered at least in some parts 
of their range. Our global overview of B. jonellus suggests 
an unexpected cryptic diversity and that conservation efforts 
would be especially relevant in regions presenting unique 
haplotypes (e.g. the Pyrenees, Norway, Siberia, Belgium or 
Kolyma). However, despite the singularity of these haplo-
types often defined only based on a gene fragment (i.e. COI), 
it is on a global scale that the species could be threatened 
by environmental changes requiring local but also global 
conservation plans. In addition, although the population heb-
ridensis from the Hebrides does not present a unique haplo-
type separating it from the mainland populations, its original 
combination of a unique colour pattern, subtle morphologi-
cal and presumable ecological differences (Alford 1975; 
personal observations) would make it an interesting model 
to investigate the intraspecific radiation of colour patterns 
within morphologically monotonous bumblebee species.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00300- 021- 02937-x.
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