The bees (Hymenoptera: Apoidea) of the Maltese Islands

MARIO V. BALZAN 1,6, PIERRE RASMONT 2, MICHAEL KUHLMANN 3, HOLGER DATHE 4, ALAIN PAULY 5, SÉBASTIEN PATINY 2, MICHAEL TERZO 2 & DENIS MICHEZ 2

1 Laboratory of Terrestrial Ecology, Institute of Applied Sciences, Malta College of Arts, Science and Technology, Paola, PL9032, Malta. E-mail: mario.balzan@mcast.edu.mt
2 Laboratory of Zoology, Research Institute of Biosciences, University of Mons, Place du Parc 23, 7000 Mons, Belgium. E-mail: pierre.rasmont@umons.ac.be; denis.michez@umons.ac.be
3 Zoological Museum, University of Kiel, Hegewischstr. 3, D-24105 Kiel, Germany. E-mail: mkuhlmann@zoolmuseum.uni-kiel.de
4 Senckenberg Deutsches Entomologisches Institut, Eberswalder Straße 90, 15374 Müncheberg, Germany. E-mail: holger.dathe@senckenberg.de
5 Royal Belgian Institute of Natural Sciences, OD Taxonomy, Rue Vautier 29, 1000 Brussels, Belgium. E-mail: alain.pauly@brutele.be
6 Corresponding author. E-mail: mario.balzan@mcast.edu.mt

Abstract

This study presents the first checklist of the bees of the Maltese Islands and includes notes on the distribution of each species. A total of 95 species belonging to five bee families are recorded: Andrenidae (17 species), Apidae (34 species), Colletidae (6 species), Halictidae (15 species) and Megachilidae (23 species). *Lasioglossum callizonium* (Pérez, 1896) is recorded for the first time from the Maltese Islands. Records of three previously reported species are listed as dubious. The bee fauna of the Maltese Archipelago is dominated by widespread West-Palaearctic species, and most of the species recorded are also found in the Western Mediterranean Basin. Bees that have been recorded from Malta are also known from Southern Europe. The study provides a biogeographical analysis of the Maltese bee fauna, and discusses the conservation of this group and their important role in the delivery of ecosystem services in the Maltese Islands.

Key words: biogeography, islands, *Lasioglossum callizonium*, Mediterranean, pollinators, wild bees, Malta

Introduction

The bee fauna of the Maltese Islands remains relatively poorly studied despite the importance of this group for the pollination of crops and wild plants. The earliest documented records are those of Alfken (1929) who published a list of Hymenoptera, which included 20 species of bees. More recent records of the bees of Malta were described by Valletta (1971, 1979), who recorded 50 bee species. The latest publication on the bee fauna of Malta was by Schembri (1982), who listed 40 species, of which 16 had not been previously recorded by the contributions of Valletta (1971, 1979).

The aim of this article is to review the literature on the bee fauna in the Maltese Islands, to add some more recent observations, and to finally provide an updated check-list.

Materials and methods

Study area. The Maltese archipelago is a group of low-lying, small islands situated in the Central Mediterranean Sea at 96 km south of Sicily, almost 300 km east of Tunisia and some 350 km north of the Libyan coast. The archipelago is made up of three inhabited islands (Malta, Gozo and Comino) and several uninhabited islets, with a total land area of 316 km². The relatively high plant diversity in the Maltese Islands (Schembri 1993), and the fact that the highest diversity of European bees is recorded within the Mediterranean region (Nieto et al. 2014), a biodiversity hotspot of global importance (Myers et al. 2000), suggests that the Archipelago may have a diverse bee community.
The Maltese archipelago has an interesting biogeography, and harbours considerable biodiversity (Schembri 1993). The Islands are part of the African tectonic plate and consist of Globigerina Limestone formed from sedimentation in shallow seas during the Tertiary period. The Maltese and Pelagian Islands and the Hyblean plateau of Southern Sicily are the emerged parts of the Pelagian Block. This is the foreland margin of the African plate, and was originally colonised by species from the European and African mainlands during the Messinian Salinity Event (Hunt & Schembri 1999). At the beginning of the Pliocene, species that had colonised the different islands became isolated as the Mediterranean basin was inundated. This was followed by a long period of isolation during the Pliocene and Lower to Middle Pleistocene. The Maltese Islands still host a number of palaeoendemic species that occupied the pre-Quaternary Pelagian Block during the Messinian Salinity Event, and were subsequently isolated following the inundation. During the Quaternary Period, the Maltese Islands experienced several colonisation episodes from Sicily during some of the marine regressions associated with the Pleistocene glaciations (Hunt & Schembri 1999). A number of neoendemic species reached the islands by dispersing from Sicily, across land bridges or by crossing a narrow sea barrier, then became cut off when the land connection was severed during interglacials and evolved in relative isolation. These Quaternary colonisations explain the presence of a large number of endemic forms that are less strongly differentiated from their Sicilian counterparts (Hunt & Schembri 1999), and the close resemblance of the Maltese biota to that of Sicily (Thake 1985; Hunt & Schembri 1999; Schembri 2003). Ants (Hymenoptera: Formicidae) have also been extensively studied, and a total of 50 species have been recorded with the bulk of these being widespread in the Mediterranean region. Seven of these species have a North African affinity while two ant species are endemic to the Maltese Islands (Schembri 2003). The Curculionoidea (Coleoptera) of Malta are a relatively diverse insect group on the Maltese Islands. Most (45.45%) are widespread euryoecious species, while a total 16.97% are widespread in the Mediterranean region, 12.72% and 1.82% are recorded from the Western and Eastern Mediterranean Basins respectively, while 11.52% are European species, 3.03% have a North African affinity, 2.42% have an Italian subendemic distribution, 1.22% are recorded only in Malta and Sicily and 4.85% of the recorded species are endemic to Malta (Mifsud and Colonelli, 2010).

The Maltese Islands also have a long cultural history and the earliest evidence of settlement dates back to around 7000 BP (Schembri 1993). With agriculture being as old as humankind's remote origins on the archipelago, the landscapes of the Maltese Islands have been highly modified over the millennia. The first settlements were associated with deforestation for agriculture, the introduction of livestock and grazing activities (Schembri 1993). Agricultural remains Malta's predominant land cover to date, occupying around 51% of the territory. Built-up, industrial and urban areas today occupy more than 30% of the Maltese Islands (MEPA 2010). In 2013, the total human population of the Maltese Islands stood at 425,384, that is a population density of 1,346 persons per km2, which effectively makes the Archipelago one of the most densely populated countries in the world. The resident population is augmented significantly by tourist arrivals, which stood at 1.6 million in 2013 (NSO 2014). Thus the Maltese Islands' biodiversity would be expected to be subject to substantial pressure from urban and tourism development. However, the Islands also host a number of designated protected areas, which had a total of 21.5% of land area in 2011 and, support habitats and species of ecological importance.

Methods

The personal collections of the authors and their field notes were used to develop this updated check-list. Additionally, the collection at the National Museum of Natural History (NMNH) at Mdina, Malta, was also studied. Full details of the examined specimens are published here. The name of the species was given first followed by the locality, date of capture and collector. Specimens located at the National Museum of Natural History in Mdina, Malta, were indicated in square brackets [NMNH]. Notes on the distribution of each species were also included. Reference was made to previous records on the bee fauna of Malta, including the preliminary list by Valletta (1971), and the following additions by Valletta (1979) and Schembri (1982). In addition, we made reference to the taxonomic catalogue of the Palaearctic bees of the tribe Osmiini by Ungricht et al. (2008) and the
Results

The present work compiles records from previous publications and collections of the authors and provides a first check-list of the bee fauna of the Maltese Islands. A total of 95 species were recorded from the Maltese Islands (Table 2). These belong to the following five bee families: Andrenidae (17 species), Apidae (34 species), Colletidae (6 species), Halictidae (15 species) and Megachilidae (23 species). *Lasioglossum callizonium* is recorded for the first time from the Maltese Islands.

The records of the 95 species of bees from locations within the Maltese Islands (Figure 1), and a description of their distribution, with a particular focus on the Mediterranean region, are included below.

FIGURE 1. A map of the Maltese Islands showing locations from where the specimens included in this paper were collected: 1—Addolorata Cemetery; 2—Bahrija; 3—Balluta; 4—Bugibba; 5—Buskett; 6—Cirkewwa; 7—Delimara; 8—Had-Dingli; 9—Fawwara; 10—Fiddien; 11—Ghadira; 12—Ghajn Rihana; 13—Ghammieri, Hal Qormi; 14—Ghar Dalam, Birzebbuga; 15—Ghar Lapsi; 16—Gharghur; 17—Hal Ghaxaq; 18—Gwardamangia; 19—Marsascala; 20—Misra l-Ferha; 21—Intahleb; 22—Qattara (Gozo); 23—Hal Qormi; 24—Rabat; 25—St. Julian’s; 26—Ta’ Qali; 27—Tal-Qroqq, Msida; 28—Wied il-Ghasel, il-Mosta; 29—Wied il-Qlejgha, Rabat; 30—Wied l-Ahm (Comino); 31—Xlendi (Gozo); 32—Marsaxlokk.
Andrenidae

Andrena agilissima (Scopoli, 1770):
Determined as Andrena flessae (Panzer, 1805) by IHH Yarrow in NMNH collection but this is synonymised with A. agilissima (see Gusenleitner & Schwarz 2002)
Previous Reports: Alfken (1929); Valletta (1971); Schembri (1982); Kuhlmann et al. (2015):
Examined Specimen: 1♀ [NMNH]
Distribution: Continental Europe and Northern Africa, and the islands of Corsica, Sardinia and Sicily, and the Balearic Islands.

Andrena miegiella (Dours, 1873)
Previous Reports: Schembri (1982)
Distribution: Mediterranean basin including the islands of Corsica, Sardinia and Sicily.

Andrena aff. leucophaea (Lepeletier, 1841)
Previous Reports: Valletta (1971)
Distribution: Algeria, Spain, Sicily and the Balearic Islands.

Andrena binominata (Smith, 1853)
Previous Reports: Schembri (1982); Kuhlmann et al. (2015)
Distribution: Western Mediterranean Basin, Sicily and the Balearic Islands.

Andrena nigroolivacea (Dours, 1873)
Previous Reports: Schembri (1982); Kuhlmann et al. (2015)
Distribution: Western Mediterranean Basin, Croatia and Greece, and the islands of Corsica, Sardinia, Sicily and the Balearic Islands.

Andrena bicolor (Fabricius, 1775)
Determined as Andrena impunctata ssp. contusa in Schembri (1982).
Previous Reports: Valletta (1971); Kuhlmann et al. (2015)
Distribution: widespread in the western Palaearctic, including Europe, the Middle East and Northern Africa.

Andrena impunctata (Pérez, 1895)
Determined as Andrena impunctata ssp. contusa in Schembri (1982).
Previous Reports: Schembri (1982); Kuhlmann et al. (2015)
Distribution: Continental Europe, Northern Africa (Algeria, Tunisia, Egypt), Middle East (Israel, Lebanon, Turkey), Corsica, Sicily, and the Balearic and Canary Islands. Bees found in Israel into North Africa are referred as to A. i. contusa (Warncke 1980).

Andrena decipiens (Schenck, 1861)
Previous Reports: Schembri (1982); Kuhlmann et al. (2015)
Distribution: Continental Europe, North-western Africa (Morocco, Algeria), Sicily.

Andrena bimaculata (Kirby, 1802)
Previous Reports: Valletta (1971); Kuhlmann et al. (2015)
Distribution: widespread in the western Palaearctic, including Europe, Northern Africa and Middle East.

Andrena pilipes (Fabricius, 1781)
Previous Reports: Alfken (1929); Valletta (1971); Schembri (1982)
Andrena tibialis (Kirby, 1802)
Previous Reports: Kuhlmann et al. (2015)
Distribution: widespread in Continental Europe.

Andrena morio Brullé, 1832
Previous Reports: Alfken (1929); Valletta (1971); Kuhlmann et al. (2015)
Distribution: widespread in Europe and Northern Africa.

Andrena nigroaenea (Kirby, 1802)
Previous Reports: Alfken (1929); Valletta (1971); Schembri (1982); Kuhlmann et al. (2015)
Distribution: Widespread in Europe and Northern Africa.

Andrena savignyi (Spinola, 1838)
Previous Reports: Schembri (1982)
Distribution: Northern Africa, Italy and Corsica.

Andrena cyanomicans (Pérez, 1895)
Previous Reports: Kuhlmann et al. (2015)
Distribution: North-western Africa, Portugal and Spain, and Israel and Jordan.

Andrena flavipes Panzer, 1799
Previous Reports: Valletta (1971); Kuhlmann et al. (2015)
Distribution: Widespread in Europe and Northern Africa.

Panurgus siculus (Morawitz, 1871)
Determined as Panurgus dentipes siculus (Morawitz, 1871) but this is synonymised with P. siculus (Patiny 2001).
Previous Reports: Valletta (1971); Schembri (1982)
Examined Specimens: 13♀, 2♂, Hal Ghaxaq, 15-iv-2014, MV Balzan; 2♀, MV Balzan; 1♂, Ghar Lapsi (Siġġiewi), 5-v-2014, Balzan.
Distribution: Central Mediterranean Basin (Corsica, Sardinia, Sicily, Southern Italy).

Apidae

Amegilla quadrifasciata (de Villers, 1789)
Determined as Anthophora mediterranea (Alfken, 1927) by Alfken (1929) but this is synonymised with A. quadrifasciata (Kuhlmann et al. 2015).
Previous Reports: Alfken (1929); Valletta (1971); Schembri (1982);
Distribution: Continental Europe and Northern Africa, Corsica, Sardinia and Sicily.

Amegilla albigena (Lepeletier, 1841)
Determined as Anthophora albigena ssp. albida (Dours, 1869) in Valletta (1971) but this is synonymised with A. albigena (Kuhlmann et al. 2015).
Previous Reports: Alfken (1929); Valletta (1971)
Distribution: South and Eastern Continental Europe, North-western Africa, and the islands of Corsica, Sardinia and Sicily.

Ammobatoides luctuosus (Friese, 1911)
- Previous Reports: Kuhlmann *et al.* (2015)
- Distribution: Italy, Eastern Europe (Lithuania, Moldova) and Mediterranean Basin (Macedonia, Turkey).

Anthophora dispar (Lepeletier 1841)
- Previous Reports: Alfken (1929); Kuhlmann *et al.* (2015)

Anthophora plagiata (Illiger, 1806)
- Determined as *Anthophora parietina* (Fabricius, 1793) but this is synonymised with *A. plagiata* (Kuhlmann *et al.* 2015).
- Previous Reports: Valletta (1971); Schembri (1982)
- Specimens Examined: 2♀, Buskett, 14-ii-1976, P Sammut [NMNH]; 1♀, Buskett, 28-ii-1976, P Sammut [NMNH];
- Distribution: Continental Europe, Algeria, and Sicily.

Anthophora plumipes (Pallas, 1772)
- Determined as *Anthophora acervorum var pennata* (Lepeletier, 1841) in the collection of the NMNH by IHH Yarrow, and in Valletta (1971), and determined as *Anthophora acervorum* L. in Schembri (1982) but these are synonymised with *A. plumipes* (Kuhlmann *et al.* 2015).
- Previous Reports: Valletta (1971); Schembri (1982)
- Specimens Examined: 1♀, Chadwick Lakes, 19-iii-1952 [NMNH]
- Distribution: Continental Europe, North-western Africa (Morocco, Algeria, Tunisia), the islands of Corsica, Cyprus, Sardinia and Sicily.

Anthophora retusa (L., 1758)
- Previous Reports: Valletta (1971)
- Distribution: Continental Europe, Sardinia and Sicily.

Anthophora canescens (Brullé, 1832)
- The specimen at the NMNH was determined as *Anthophora nigrocincta* (Lepeletier, 1841) by IHH Yarrow but this is synonymised with *A. canescens*. (Kuhlmann *et al.* 2015).
- Previous Reports: Kuhlmann *et al.* (2015)
- Specimens Examined: 1♀ [NMNH]
- Distribution: Mediterranean Basin.

Apis mellifera (L., 1758)
- Previous Reports: Alfken (1929); Valletta (1971); Schembri (1982); Sheppard *et al.* (1997)
- Distribution: Global distribution - occurs naturally in Europe, the Middle East, and Africa but has been spread extensively beyond its range. Endemic honey bees of the Maltese Islands are a distinct geographical race, *Apis mellifera ruttneri* (Sheppard *et al.* 1997).
Bombus terrestris (L., 1758)
Previous Reports: Valletta (1971)
Distribution: It has a Mediterranean-centred distribution but is not restricted to this region. It is widespread in Europe, middle and northern latitudes of Asia, and it has been introduced to Australasia and South America.

Ceratina cyanea (Kirby, 1802)
Previous Reports: Kuhlmann et al. (2015)
Specimens Examined: 1♀, 2♂, Delimara (Marsaxlokk), 26-v-2014, MV Balzan; 1♀, Għammieri (Ħal Qormi), MV Balzan; 23-vi-2014, 2♂, Għammieri (Ħal Qormi), 9-vii-2014, MV Balzan; 1♀, Għammieri (Ħal Qormi), 11-viii-2014, MV Balzan;
Distribution: Continental Europe, Maghreb (Algeria, Tunisia), Libya and central Asia, Corsica, Sardinia and Sicily.

Ceratina dallatorreana (Friese, 1896)
Previous Reports: Kuhlmann et al. (2015)
Distribution: Mediterranean Basin.

Ceratina gravidula (Gerstäcker, 1869)
Previous Reports: Kuhlmann et al. (2015)
Distribution: Mediterranean Basin. Rare and localised abundance in the North of the Balkans and the Black Sea.

Dioxys cincta (Jurine, 1807)
Previous Reports: Valletta (1971)
Distribution: Mediterranean Basin.

Eucera algira (Brullé, 1840)
Previous Reports: Valletta (1971); Kuhlmann et al. (2015)
Distribution: Southern Europe, North Africa, extends to Western Asia.

Eucera eucnemidea (Dours, 1873)
Previous Reports: Valletta (1971); Schembri (1982); Kuhlmann et al. (2015)
Distribution: Western Mediterranean Basin.

Eucera longicornis (L., 1758)
Previous Reports: Valletta (1971)
Specimens Examined: 1♀, 1♂, Buskett, 28-ii-1976, P Sammut; 1♂, Had Dingli, 20-ii-1977, CJ Aquilina; 1♀, 1♂, Tal-Qattara (Malta), 26-ii-1978, CJ Aquilina; 1♂, Tal-Qattara (Malta), 5-iii-1978, CJ Aquilina;
Distribution: Widespread in Europe, with its range extending to Siberia and China.

Eucera numida (Lepeletier, 1841)
Previous Reports: Valletta (1971); Kuhlmann et al. (2015)
Distribution: Western Mediterranean Basin, Corsica, Sardinia and Sicily.

Eucera oraniensis (Lepeletier, 1841)
Previous Reports: Schembri (1982); Kuhlmann et al. (2015)
Distribution: Western Mediterranean Basin.
Eucera rufa (Lepeletier, 1841)
Specimen at the NMNH determined as *Eucera ruficollis* (Brullé, 1832), while this was recorded as *Tetralonia berlandi* Dusm. in Schembri (1982).
Previous Reports: Valletta (1971); Schembri (1982); Kuhlmann *et al.* (2015)
Specimens Examined: Examined Specimens: 1♀ [NMNH]
Distribution: Southern Europe and Northern Africa. Its distribution extends to the Middle East (Turkey, Israel, Lebanon, Jordan).

Habropoda zonatula (Smith, 1854)
Previous Reports: Kuhlmann *et al.* (2015)
Distribution: Southern Europe, including the islands of Sardinia and Sicily and, extending to Western Asia.

Melecta albifrons (Forster, 1771)
Previous Reports: Valletta (1979)
Distribution: Continental Europe, Northern Africa, United Kingdom, and the islands of Cyprus, Corsica and Sardinia.

Melecta duodecimmaculata (Rossi, 1790)
Previous Reports: Kuhlmann *et al.* (2015)
Distribution: Mediterranean Basin, Sicily and Cyprus.

Melecta leucorhyncha (Gribodo, 1893)
Previous Reports: Kuhlmann *et al.* (2015)
Distribution: Mediterranean Basin, Cyprus, Corsica, Sardinia, and Sicily.

Melecta luctuosa (Scopoli, 1770)
Previous Reports: Valletta (1971)
Distribution: Europe and North-western Africa, Corsica, Cyprus and Sicily.

Nomada bifasciata (Olivier, 1811)
Previous Reports: Kuhlmann *et al.* (2015)
Distribution: Continental Europe, Northern Africa (Morocco, Algeria, Tunisia), Sicily and Cyprus.

Nomada distinguenda (Morawitz, 1874)
Previous Reports: Kuhlmann *et al.* (2015)
Distribution: Continental Europe, Morocco and the islands of Corsica, Sardinia, Sicily, Cyprus.

Nomada fulvicornis (Fabricius, 1793)
Previous Reports: Kuhlmann *et al.* (2015)
Distribution: Continental Europe, Northern Ireland, Morocco and the islands of Corsica, Cyprus, Sardinia and Sicily.

Nomada kohli (Schmiedeknecht, 1882)
Previous Reports: Kuhlmann *et al.* (2015)
Distribution: Southern Europe, Algeria, the islands of Cyprus and Sicily.

Nomada rufa (Rossi, 1790)
Previous Reports: Valletta (1971)
Distribution: Italy and Malta.

Nomada stigma (Fabricius, 1804)
Determined as *Nomada cinnaberina* (Morawitz 1871) but this is synonymised with *N. stigma* (Kuhlmann *et al.* 2015).
BEES OF THE MALTESE ISLANDS

Thyreus histrionicus (Illiger, 1806)
Determined as Crocisa major (Morawitz, 1875) by Alfken (1929) but this is synonymised with T. histrionicus (Kuhlmann et al. 2015).

Previous Reports: Alfken (1929); Schembri (1982); Kuhlmann et al. (2015)
Specimens Examined: 1♂, C De Lucca [NMNH]
Distribution: Continental Europe, Northern Africa, and the islands of Corsica, Cyprus, Sardinia, and Sicily.

Thyreus ramosus (Lepeletier, 1841)
Determined as Crocisa circulata (Alfken, 1929) and Thyreus ramosa (Lepeletier, 1841) but these are synonymised with T. ramosus (Kuhlmann et al. 2015).

Previous Reports: Alfken (1929); Valletta (1971); Schembri (1982)
Distribution: Southern Europe, Northern Africa, extending to Western Asia. Recorded from the islands of Corsica, Cyprus, Sardinia and Sicily.

Xylocopa violacea (L., 1758)
Previous Reports: Alfken (1929); Valletta (1971); Schembri (1982); Kuhlmann et al. (2015)
Specimens Examined: 2♀, 2♂, Buskett, 14-ii-1976, P Sammut; 1♀, Gwardamanġia, 30-v-1976, CJ Aquilina; 1♂, Rabat, 30-x-1988, P Sammut; 1♀, Buskett, 17-vii-2014, P Portelli; 1♂, Dingli Cliffs, 5-x-2014, P Sammut; 1♀, vii-72, [NMNH]; 1♂, Marsascala, vii-1984, M Zammit.
Distribution: Continental Europe, Ireland, the Maghreb countries of Morocco, Algeria and Tunisia, and the islands of Corsica, Cyprus, Sardinia and Sicily.

Colletidae

Hylaeus imparilis (Förster, 1871)
Previous Reports: Kuhlmann et al. (2015)
Specimens Examined: 1♂, Ta’ Ċenċ (Sannat), 7-iv-1999, B and G Degen; 3♂, Marfa Ridge (Mellieha), 14-iv-1999, B and G Degen; 1♀, Dingli Cliffs (Dingli), 17-iv-1999, B and G Degen; 1♂, Golden Bay (Mgarr), 21-iv-1999, B and G Degen; 1♂, Wied Qirda (Siggiewi), 26-iii-2012, Liston; 1♀, Għar Lapsi (Siggiewi), 5-v-2014, MV Balzan; 1♂, 3♀, Delimara (Marsaxlokk), 26-v-2014, MV Balzan;
Distribution: Mediterranean Basin, Eastern Europe and the islands of Cyprus, Sardinia and Sicily.

Hylaeus clypearis (Schenck, 1853)
Previous Reports: Kuhlmann et al. (2015)
Distribution: Continental Europe and North Africa, and the islands of Cyprus, Corsica, Sardinia and Sicily.

Hylaeus taeniolatus (Förster, 1871)
Previous Reports: Kuhlmann et al. (2015)
Specimens Examined: 8♂, 7♀, St. Julians, 3-vii-1970, Stockh; 1♀, Marfa Ridge (Mellieha), 14-iv-1999, B and G Degen; 1♀, Dingli Cliffs (Dingli), 17-iv-1999, B and G Degen; 1♀, Selmun (Mellieha), 24-iv-1999, B and G Degen; 1♀, Marsaxlokk, 18-v-2003, W. Schedl; 1♀, 1♂, Delimara (Marsaxlokk), 26-v-2014, MV Balzan
Distribution: Mediterranean Basin and Central Europe (Austria, Germany, Netherlands, Switzerland) and the islands of Corsica, Cyprus, Sardinia, and Sicily.
Hylaeus signatus (Panzer, 1798)

Previous Reports: Kuhlmann et al. (2015)
Specimens Examined: 1♂, Delimara (Marsaxlokk), 17-v-2003, W Schedl; 1♂, Xlendi (Gozo), 17-v-2003, W Schedl.
Distribution: Continental Europe, the North African countries of Morocco and Tunisia, Sardinia.

Hylaeus hyperpunctatus (Strand, 1909)

Previous Reports: Valletta (1971); Kuhlmann et al. (2015)
Specimens Examined: 10♀, 4♂, Buskett (Rabat), 16-ix-1976, Schembri; 10♀, 2♂, Santa Marija (Comino), 26-ix-1977, Schembri; 2♂, Birzebbuġa, 5-vii-1978, Richards
Distribution: Southern Europe and the islands of Corsica, Sardinia and Sicily.

Hylaeus punctatus (Brullé, 1832)

Previous Reports: Valletta (1971)
Distribution: Continental Europe, Corsica, Sicily and Sardinia.

Halictidae

Ceylalictus variegatus (Olivier, 1789)

Determined as Nomioides variegata (Olivier, 1789) but this is synonymised with C. variegatus (Kuhlmann et al. 2015).
Previous Reports: Valletta (1971)
Distribution: Mediterranean Basin, Eastern Europe, Middle East, Cyprus, Sardinia and Sicily.

Halictus brunnescens (Friese, 1916)

Determined as Halictus aegyptiacus (Friese, 1916) but this is synonymised with H. brunnescens (Kuhlmann et al. 2015).
Previous Reports: Schembri (1982)
Distribution: Continental Europe, North Africa and the islands of Corsica, Cyprus, Sardinia and Sicily.

Halictus fulvipes (Klug, 1817)

Previous Reports: Alfken (1929); Valletta (1971); Schembri (1982)
Distribution: Western Mediterranean Basin, Ukraine and the islands of Corsica, Sicily, Sardinia.

Halictus rubicundus (Christ, 1791)

Previous Reports: Valletta (1971)
Distribution: Continental Europe, Sicily, Morocco.

Halictus scabiosae (Rossi 1790)

Previous Reports: Valletta (1971)
Distribution: Continental Europe, Morocco, Iraq, Sardinia, Sicily.
Lasioglossum malachurum (Kirby 1802)
Determined as *Halictus malachurus* (Kirby) by Alfken (1929) and Valletta (1971).
Previous Reports: Alfken (1929); Valletta (1971); Schembri (1982)
Specimens Examined: 1♀, Delimara (Marsaxlokk), 26-v-2014, MV Balzan
Distribution: Continental Europe, North Africa and the Middle East (Iran, Georgia and Azerbaijan), Cyprus, Sardinia, and Sicily.

Lasioglossum minutissimum (Kirby, 1802)
Determined as *Halictus minutissimum* (Kirby, 1802).
Previous Reports: Valletta (1971)
Specimens Examined: 1♀, Għammieri (Ħal Qormi), 9-vii-2014, MV Balzan
Distribution: Continental Europe and England and Northern Ireland, Northern Africa, and Cyprus, Sardinia and Sicily.

Lasioglossum limbellum (Morawitz, 1876)
Determined as *Halictus ventralis* (Pérez, 1903) but this is synonymised with *L. limbellum* (Kuhlmann et al., 2015).
Previous Reports: Valletta (1971); Kuhlmann et al. (2015)
Distribution: Continental Europe, Northern Africa (Morocco and Algeria) and the islands of Cyprus, Corsica and Sicily.

Lasioglossum transitorium (Schenck, 1868)
Determined as *Halictus transitorius* (Schenck, 1868) *planulus* (Pérez, 1903) by Alfken (1929)
Previous Reports: Alfken (1929); Kuhlmann et al. (2015)
Specimens Examined: 1♀, Ghar Lapsi (Siġġiewi), 5-v-2014, MV Balzan
Distribution: The subspecies *L. transitorium planulum* is recorded from the Western Mediterranean, including the islands of Corsica and Sicily.

Lasioglossum callizonium (Pérez, 1896)
Specimens Examined: 1♂, Għammieri (Ħal Qormi), 9-vii-2014, MV Balzan
Distribution: Western Mediterranean Basin, Corsica, Sardinia, Sicily, Egypt, Israel and Saudi Arabia.

Nomioides facilis (Smith, 1853)
Previous Reports: Kuhlmann et al. (2015)
Distribution: Morocco, Algeria, Tunisia, Southern Europe, and Sicily.

Nomiapis bispinosa (Brullé, 1832)
Determined as *Pseudapis unidentata* (Olivier, 1812) but this is synonymised with *N. bispinosa* (Baker 2002).
Previous Reports: Schembri (1982)
Distribution: Mediterranean basin, Hungary, southern Russia. In Asia it occurs from Turkey to Pakistan.

Seladonia gemmea (Dours, 1872)
Determined as *Halictus gemmeus* (Dours, 1872).
Previous Reports: Valletta (1971)
Distribution: West Mediterranean, Corsica, Greece, Turkey and Syria.

Seladonia smaragdula (Vachal, 1895)
Distribution: The subspecies *S. smaragdula vinula* (Blüthgen, 1923) is recorded from Malta and Sicily.
Megachilidae

Anthidium florentinum (Fabricius 1775)
Determined as *Anthidium florentina* in Valletta (1979).
Previous Reports: Valletta (1979); Schembri (1982)
Distribution: Continental Europe, Algeria, Middle East and the islands of Cyprus, Sardinia and Sicily.

Anthidium manicatum (L., 1758)
Previous Reports: Alfken (1929); Valletta (1971); Schembri (1982)
Distribution: Continental Europe, North Africa, Middle East and the islands of Sardinia and Sicily.

Anthidium strigatum (Panzer, 1805)
Determined as *Anthidellum striatum* (Latreille, 1802).
Previous Reports: Schembri (1982)
Distribution: Continental Europe, Maghreb, Middle East and the islands of Cyprus and Sicily.

Heriades crenulata (Nylander, 1856)
Previous Reports: Schembri (1982); Ungricht et al. (2008); Kuhlmann et al. (2015)
Specimens Examined: 1♀, 2♂, Ghammieri (Hal Qormi), 23-vi-2014, MV Balzan; 1♀, Ghammieri (Hal Qormi), 9-vii-2014, MV Balzan; 1♂, Ghammieri (Hal Qormi), 11-viii-2014, MV Balzan;
Distribution: Continental Europe, Maghreb, Western Asia, Sardinia and Sicily.

Heriades rubicola (Pérez, 1890)
Previous Reports: Ungricht et al. (2008); Kuhlmann et al. (2015)
Distribution: Southern Europe, Maghreb, Western Asia, Corsica, Cyprus, Sardinia and Sicily.

Heriades punctulifera (Schletterer, 1889)
Previous Reports: Kuhlmann et al. (2015)
Distribution: Eastern Mediterranean Basin, Italy, the islands of Cyprus and Sicily.

Lithurgus tibialis (Morawitz, 1875)
Previous Reports: Schembri (1982);
Distribution: Southern Europe, Turkey, Israel and Cyprus.

Megachile sicula (Rossi, 1792)
Determined as *Chalicodoma sicula* (Rossi, 1792).
Previous Reports: Alfken (1929); Valletta (1971); Schembri (1982)
Distribution: Mediterranean Basin

Megachile fertoni (Pérez, 1896)
Previous Reports: Kuhlmann et al. (2015)
Distribution: Southern Europe, Tunisia, Turkey, the islands of Sardinia and Sicily.
Megachile schmiedeknechti (Costa, 1884)
Determined as *Megachile xanthopyga* (Pérez, 1895) in Valletta (1971) but this is synonymised with *M. schmiedeknechti* (Schembri 1982).
Previous Reports: Alfken (1929); Valletta (1971); Schembri (1982)
Specimens Examined: 3♀, Ċirkewwa, 16-vi-1976, P Sammut; 1♀, Fawwara, 11-v-1988, P Sammut; 1♀, 1♂, Ghar Dalam, 11-viii-2014, P Portelli
Distribution: France, Italy,Corsica, Sardinia.

Osmia rufohirta (Latreille 1811)
Previous Reports: Alfken (1929)
Distribution: Continental Europe, Northwestern Africa, Corsica, Sardinia and Sicily.

Osmia caerulescens (Linnaeus, 1758)
Previous Reports: Schembri (1982); Kuhlmann *et al.* (2015)
Distribution: Continental Europe and Ireland, Northern Africa, Middle East and the islands of Cyprus, Corsica, Sardinia and Sicily.

Osmia frieseana (Ducke, 1899)
Previous Reports: Ungricht *et al.* (2008); Kuhlmann *et al.* (2015)
Distribution: Northern Africa, Italy, Spain and Sardinia.

Osmia latreillei (Spinola, 1806)
Previous Reports: Alfken (1929); Valletta (1971); Schembri (1982); Ungricht *et al.* (2008); Kuhlmann *et al.* (2015)
Distribution: Mediterranean Basin, Switzerland and Germany, and the islands of Cyprus, Corsica, Sardinia and Sicily.

Osmia notata (Fabricius, 1804)
Determined as *Osmia iosignata* (Radoszkowski, 1874) by Valletta (1971) but this is synonymised with *O. notata* (Schembri 1982).
Previous Reports: Valletta (1971); Schembri (1982); Ungricht *et al.* (2008); Kuhlmann *et al.* (2015)
Distribution: Western Mediterranean Basin, Northern Africa, the islands of Corsica, Sardinia and Sicily.

Osmia tunensis (Fabricius, 1787)
Previous Reports: Kuhlmann *et al.* (2015)
Distribution: Northern Africa, Portugal, Spain, Italy and Sicily.

Osmia kohlii (Ducke, 1899)
Determined as *Osmia rufa kohlii* (Ducke, 1899) in Valletta (1971).
Previous Reports: Valletta (1971); Schembri (1982); Kuhlmann *et al.* (2015)
Specimens Examined: 1♀, 1♂, Hal Ghaxaq, 15-iv-2014, MV Balzan; 1♂, Wied l-Aħmar (Comino), 13-v-2014, P Portelli; 1♂ [NMNH]
Distribution: Southern Italy and Sicily.

Osmia ferruginea (Latreille, 1811)
Previous Reports: Schembri (1982); Ungricht *et al.* (2008); Kuhlmann *et al.* (2015)
Distribution: Western Mediterranean Basin, Northern Africa, Middle East (Israel, Jordan, Syria), Greece, Cyprus, Corsica, Sardinia and Sicily.

Osmia submicans (Morawitz, 1870)
Previous Reports: Valletta (1971); Schembri (1982); Ungricht *et al.* (2008); Kuhlmann *et al.* (2015)
Distribution: Northern Africa, Continental Europe, Middle East (Israel, Jordan, Lebanon, Syria, Turkey) and the islands of Cyprus, Corsica, Sardinia and Sicily.
Rhodanthidium septemdentatum (Latreille 1809)
Determined as Anthidium septemdentatum (Latreille, 1809) in Valletta (1971).
Previous Reports: Valletta (1971); Schembri (1982)
Distribution: Southern Europe.

Rhodanthidium siculum (Spinola, 1838)
Determined as Anthidium fontanesii (Lepeletier, 1841) by Valletta (1971) and Anthidium siculum (Spinola, 1838) by Schembri (1982) but these are synonymised with R. siculum.
Previous Reports: Valletta (1971); Schembri (1982)
Specimens examined: 1♂, Addolorata, 7/07/1948, collector? [NMNH]; 1♂ NMNH
Distribution: Western Mediterranean Basin, including Sicily.

Dubious records

The following species records are considered as dubious.

Halictidae

Lasiglossum aff. nitidiusculum (Kirby, 1802)
Determined as Halictus aff. nitidiusculus (Kirby, 1802) in Valletta (1971).
Previous Reports: Valletta (1971)
Distribution: Continental Europe, Ireland, North Africa (Morocco and Algeria) Sicily and Sardinia.
This species is recorded from the South of Europe and Northern Africa at altitudes above 1000m (Pauly, 2011) and may have been confounded with the closely related species L. transitorium.

Megachilidae

Osmia (Osmia) tricornis (Latreille 1811)
Previous Reports: Alfken (1929)
Distribution: West Mediterranean Basin, Corsica, and Sardinia.
Osmia tricornis has often been confounded with closely related O. kohlii, which occurs in Malta and Sicily. However, these two species show an allopatric distribution (Müller, 2015).

Megachile argentata (Fabricius, 1793)
Previous Reports: Valletta (1971)
Distribution: Algeria, Hungary
The species M. argentata has often been confounded with Megachile leachella (Curtis, 1828) (Schwarz and Gusenleitner 2011), but the latter has not been recorded from the Maltese Islands. M. leachella is present in Continental Europe and North Africa.

Discussion

In general, the Mediterranean region and islands harbour a relatively high diversity and endemism for bee taxa. This is partly explained by the likely role of Mediterranean areas as refuges during Quaternary glaciations (Nieto et al. 2014). A comparison of the bee diversity of islands within the region shows that bee diversity is a function of the island surface area, and bee richness is higher in larger islands (Figure 2). However, these observations are likely to be influenced by the differences in the sampling intensity in different islands. For example, 13 bee species are recorded from Menorca but this is only based on a very limited sampling effort, while a total of 175 bee species were recorded from Mallorca from a cohort of around 1200 specimens (Baldock, 2014).
The recorded bee fauna of the Maltese Islands is dominated by widespread Palearctic species (70.5%), that is species recorded from Europe, Northern Africa and the Western and Eastern Mediterranean Basin (Table 1). Most of the bees recorded from the Maltese Islands are also distributed in the Western Mediterranean Basin (96.8%), and in particular in the South of Europe (99.0%). As expected, given the central position of the Maltese Islands in the Mediterranean region, a number of species are Eastern Mediterranean faunal elements (82.11%). In this study only *H. punctulisfera* has a predominantly Eastern Mediterranean distribution, but is also recorded from the Italian mainland and Sicily (Ascher & Pickering 2015; Kuhlmann *et al.* 2015). Similar to previous observations for other invertebrate groups (Thake 1985; Hunt & Schembri 1999; Schembri 2003), the bee fauna of Malta also shows a relatively strong resemblance to that of neighbouring Sicily (83.2%). The mason bee *O. kohlii* and the subspecies *S. smaragdula vinula* are recorded from Malta and Sicily. Nearly all the bees recorded from Malta are known from Southern Europe, indicating that Quaternary marine regression events connecting the islands to Southern Europe are likely to have resulted in colonisation of the islands by bee species. A number of bee species, such as *A. retusa*, *C. gravidula*, *E. longicornis*, *H. zonatula*, *H. punctatus*, *L. tibialis* and *R. septemdentatum* are found in Southern Europe but have not been recorded from North Africa. On the other hand, some species such as *A. savignyi*, *A. cyanomicans*, *O. notata* and *O. friesana*, have a North African affinity but these are also recorded in few northern outposts in Southern Europe. The Maltese subspecies of honey bee *A. mellifera ruttneri* shows a closer relationship to the North African honey bee subspecies than to European subspecies (Sheppard *et al.* 1997). Similarly, for other terrestrial invertebrate groups, including Lepidoptera, Formicidae (Schembri 2003) and Curculionoidea (Mifsud and Colonnelli, 2010), a significant proportion of the recorded species recorded from the Maltese Islands have a North African affinity.

![Figure 2](image.png)

FIGURE 2. Diversity of bee fauna in Mediterranean islands as a function of island area. The point for bee species richness in Malta is shown in grey (data sources are shown in Table 2).
TABLE 1. The distribution of the bees recorded from the Maltese Islands. Source: Ascher & Pickering (2015); Rasmont & Haubruge (2015); and Kuhlmann et al. (2015).

<table>
<thead>
<tr>
<th>Bee species</th>
<th>Northern Africa</th>
<th>Southern Europe</th>
<th>Western Mediterranean</th>
<th>Eastern Mediterranean</th>
<th>Sicily</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrena agilissima</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Andrena miegiella</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Andrena aff. leucophaea</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Andrena binominata</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Andrena nigroolivacea</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Andrena bicolor</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Andrena impunctata</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Andrena decipiens</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Andrena bimaculata</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Andrena carbonaria</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Andrena flavipes</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Panurgus siculus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amegilla quadrifasciata</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Amegilla albigena</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Ammobatoïdes luctuosus</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Anthophora dispar</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Anthophora plagiata</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Anthophora plumipes</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Anthophora retusa</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Anthophora canescens</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Apis mellifera</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Bombus terrestris</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Ceratina cyanea</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Ceratina dallatorreana</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Ceratina gravidula</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Dioxys cincta</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Eucera algira</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Eucera eucomidea</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Eucera longicornis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Eucera numida</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Eucera oraniensis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Eucera rufa</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Habropoda zonatula</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Melecta albifrons</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Melecta duodecimmaculata</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Melecta leucorhyncha</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

......continued on the next page
<table>
<thead>
<tr>
<th>Bee species</th>
<th>Northern Africa</th>
<th>Southern Europe</th>
<th>Western Mediterranean</th>
<th>Eastern Mediterranean</th>
<th>Sicily</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melecta luctuosa</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Nomada bifasciata</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Nomada distinguenda</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Nomada fulvicornis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Nomada kohli</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Nomada rufa</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Nomada stigma</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Thyreus histrionicus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Thyreus ramosus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Xylocopa violacea</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Hylaeus imparilis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Hylaeus clypearis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Hylaeus taeniolatus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Hylaeus signatus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Hylaeus hyperpunctatus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Hylaeus punctatus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Ceylalicus variegatus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Halictus brunescens</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Halictus fulvipes</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Halictus rubicandus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Halictus scabiosae</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Lasioglossum malachurum</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Lasioglossum minutissimum</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Lasioglossum limbellum</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Lasioglossum transitorium</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Lasioglossum callizonium</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nomioides facilis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Nomiapis bispinosa</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Seladonia gemmea</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Seladonia smaragdula</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Anthidium florentinum</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Anthidium manicatum</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Anthidiellum strigatum</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Heriades cremulata</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Heriades rubicola</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Heriades punctulifera</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Lithurgus tibialis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Megachile sicula</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Megachile fertoni</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Megachile schmiedeknechti</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osmia rufohirta</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

......continued on the next page
TABLE 2. Number of bee species in islands of the Mediterranean and West Palaearctic Region.

<table>
<thead>
<tr>
<th>Island/Archipelago</th>
<th>Number of species</th>
<th>Area (Km²)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malta</td>
<td>95</td>
<td>316</td>
<td>Comba and Comba (2006)</td>
</tr>
<tr>
<td>Sicily</td>
<td>473</td>
<td>25711</td>
<td>Comba and Comba (2006)</td>
</tr>
<tr>
<td>Sardinia</td>
<td>256</td>
<td>23821</td>
<td>Comba and Comba (2006)</td>
</tr>
<tr>
<td>Canary Islands</td>
<td>124</td>
<td>7493</td>
<td>Hohmann et al. (1993); Smit (2007)</td>
</tr>
<tr>
<td>Ibiza and Formentera</td>
<td>77</td>
<td>654.24</td>
<td>Baldock (2014)</td>
</tr>
<tr>
<td>Menora</td>
<td>13</td>
<td>702</td>
<td>Baldock (2014)</td>
</tr>
<tr>
<td>Mallorca</td>
<td>175</td>
<td>3640</td>
<td>Baldock (2014)</td>
</tr>
<tr>
<td>Madeira and Porto Santo</td>
<td>19</td>
<td>843.17</td>
<td>Fellendorf et al. (1999)</td>
</tr>
<tr>
<td>Cyprus</td>
<td>310</td>
<td>9250</td>
<td>Ascher & Pickering (2015)</td>
</tr>
<tr>
<td>Crete</td>
<td>231</td>
<td>8336</td>
<td>Ascher & Pickering (2015)</td>
</tr>
<tr>
<td>Kos</td>
<td>140</td>
<td>287.2</td>
<td>Petanidou (personal communication)</td>
</tr>
<tr>
<td>Icaria</td>
<td>101</td>
<td>254.4</td>
<td>Petanidou (personal communication)</td>
</tr>
<tr>
<td>Samothraki</td>
<td>128</td>
<td>178</td>
<td>Petanidou (personal communication)</td>
</tr>
</tbody>
</table>

Data relating to population sizes and trends, distribution and conservation of the bee fauna in the Maltese Islands is limited. The high human population density, a strong tourism sector, and associated urban sprawl and infrastructural developments, together with the long history of agricultural activities on the Islands, including the more recent intensification associated with increased mechanisation and agrochemical use, would be expected to pose significant threats to the conservation of bees of the Maltese Islands. The combined stress from parasites, pesticides, and lack of flowers has been shown to drive honey bee colony losses and declines of wild pollinators in continental Europe (Goulson et al. 2015). Concurrently, bees deliver important crop and wild plant pollination services. A total of 15% of the total crop economic value of the Maltese agricultural production of fruit and
vegetables, used for human consumption, depends on pollination services (Balzan, unpublished data). The loss of bee diversity from the Maltese Islands is likely to have negative consequences for agriculture and also for the maintenance of plant diversity associated with the Maltese Islands’ cultural landscapes. The development of a research and monitoring program to develop a clear understanding of the population trends, and the taxonomy and the ecology of the species recorded, is critical for an effective conservation and management of the bee diversity and the wider benefits associated with pollination ecosystem services (Nieto et al. 2014).

Acknowledgements

We are indebted to two anonymous reviewers for comments and suggestions, and to John Borg (Senior Curator, Heritage Malta) for providing access to the collections of the National Museum of Natural History of Malta. Christophe Praz and Andreas Müller kindly identified specimens and commented on the list of species and taxonomy of Megachilidae. MVB and DM wish to acknowledge the support received from the COST Action FA1307 ‘Sustainable pollination in Europe—joint research on bees and other pollinators—SUPER-B’ (www.superb-project.eu).

References

http://dx.doi.org/10.1038/35002501

